Fine-Tuning 2D Heterogeneous Channels for Charge-Lock Enhanced Lithium Separation from Brine

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-05 DOI:10.1002/advs.202406535
Yaxin Hao, Xin Liu, Yaoling Zhang, Xin Zhang, Zhan Li, Ximeng Chen
{"title":"Fine-Tuning 2D Heterogeneous Channels for Charge-Lock Enhanced Lithium Separation from Brine","authors":"Yaxin Hao,&nbsp;Xin Liu,&nbsp;Yaoling Zhang,&nbsp;Xin Zhang,&nbsp;Zhan Li,&nbsp;Ximeng Chen","doi":"10.1002/advs.202406535","DOIUrl":null,"url":null,"abstract":"<p>The extraction of lithium (Li) from complex brines presents significant challenges due to the interference of competing ions, particularly magnesium (Mg<sup>2</sup>⁺), which complicates the selective separation process. Herein, a strategy is introduced employing charge-lock enhanced 2D heterogeneous channels for the rapid and selective uptake of Li⁺. This approach integrates porous ZnFe<sub>2</sub>O<sub>4</sub>/ZnO nanosheets into Ag<sup>+</sup>-modulated sub-nanometer interlayer channels, forming channels optimized for Li⁺ extraction. The novelty lies in the charge-lock mechanism, which selectively captures Mg<sup>2</sup>⁺ ions, thereby facilitating the effective separation of Li from Mg. This mechanism is driven by a charge transfer during the formation of ZnFe<sub>2</sub>O<sub>4</sub>/ZnO, rendering O atoms in Fe-O bonds more negatively charged. These negative charges strongly interact with the high charge density of Mg<sup>2</sup>⁺ ions, enabling the charge-locking mechanism and the targeted capture of Mg<sup>2</sup>⁺. Optimization with Ag⁺ further improves interlayer spacing, increasing ion transport rates and addressing the swelling issue typical of 2D membranes. The resultant membrane showcases high water flux (44.37 L m⁻<sup>2</sup> h⁻¹ bar⁻¹) and an impressive 99.8% rejection of Mg<sup>2</sup>⁺ in real brine conditions, achieving a Li⁺/Mg<sup>2</sup>⁺ selectivity of 59.3, surpassing existing brine separation membranes. Additionally, this membrane demonstrates superior cyclic stability, highlighting its high potential for industrial applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 41","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202406535","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction of lithium (Li) from complex brines presents significant challenges due to the interference of competing ions, particularly magnesium (Mg2⁺), which complicates the selective separation process. Herein, a strategy is introduced employing charge-lock enhanced 2D heterogeneous channels for the rapid and selective uptake of Li⁺. This approach integrates porous ZnFe2O4/ZnO nanosheets into Ag+-modulated sub-nanometer interlayer channels, forming channels optimized for Li⁺ extraction. The novelty lies in the charge-lock mechanism, which selectively captures Mg2⁺ ions, thereby facilitating the effective separation of Li from Mg. This mechanism is driven by a charge transfer during the formation of ZnFe2O4/ZnO, rendering O atoms in Fe-O bonds more negatively charged. These negative charges strongly interact with the high charge density of Mg2⁺ ions, enabling the charge-locking mechanism and the targeted capture of Mg2⁺. Optimization with Ag⁺ further improves interlayer spacing, increasing ion transport rates and addressing the swelling issue typical of 2D membranes. The resultant membrane showcases high water flux (44.37 L m⁻2 h⁻¹ bar⁻¹) and an impressive 99.8% rejection of Mg2⁺ in real brine conditions, achieving a Li⁺/Mg2⁺ selectivity of 59.3, surpassing existing brine separation membranes. Additionally, this membrane demonstrates superior cyclic stability, highlighting its high potential for industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微调二维异质通道,从盐水中分离电荷锁定增强型锂。
从复杂盐水中萃取锂(Li)是一项重大挑战,因为竞争离子,特别是镁(Mg2⁺)的干扰使选择性分离过程变得复杂。本文介绍了一种利用电荷锁定增强型二维异质通道快速、选择性吸收锂离子的策略。这种方法将多孔的 ZnFe2O4/ZnO 纳米片集成到 Ag+ 调制的亚纳米层间通道中,形成优化的锂离子萃取通道。其新颖之处在于电荷锁定机制,该机制可选择性地捕获 Mg2⁺离子,从而促进锂与 Mg 的有效分离。这种机制是由 ZnFe2O4/ZnO 形成过程中的电荷转移驱动的,电荷转移使 Fe-O 键中的 O 原子带更多负电荷。这些负电荷与 Mg2⁺离子的高电荷密度发生强烈相互作用,从而实现了电荷锁定机制和 Mg2⁺的定向捕获。用 Ag⁺ 进行优化后,膜层间的间距得到进一步改善,提高了离子传输速率,并解决了二维膜典型的膨胀问题。最终的膜展示了高水通量(44.37 L m-2 h-¹ bar-¹)和在实际盐水条件下令人印象深刻的 99.8% 的 Mg2⁺ 阻隔率,实现了 59.3 的 Li⁺/Mg2⁺ 选择性,超过了现有的盐水分离膜。此外,这种膜还表现出卓越的循环稳定性,凸显了其在工业应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Near-Isotropic, Extreme-Stiffness, Continuous 3D Mechanical Metamaterial Sequences Using Implicit Neural Representation. Possible Superconductivity Transition in Nitrogen-Doped Lutetium Hydride Observed at Megabar Pressure. Surface Modifications of Layered Perovskite Oxysulfide Photocatalyst Y2Ti2O5S2 to Enhance Visible-Light-Driven Water Splitting. Targeting the NOTCH2/ADAM10/TCF7L2 Axis-Mediated Transcriptional Regulation of Wnt Pathway Suppresses Tumor Growth and Enhances Chemosensitivity in Colorectal Cancer. Vector-Free Deep Tissue Targeting of DNA/RNA Therapeutics via Single Capacitive Discharge Conductivity-Clamped Gene Electrotransfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1