Mingxia Xu, Qiming Bing, Yunchuan Tu, Yunlong Zhang, Mo Zhang, Yafeng Cai, Jinlei Li, Xianguang Meng, Jia Zhu, Prof. Liang Yu, Prof. Dehui Deng
{"title":"Full-Spectrum Light-Harvesting Solar Thermal Electrocatalyst Boosts Oxygen Evolution","authors":"Mingxia Xu, Qiming Bing, Yunchuan Tu, Yunlong Zhang, Mo Zhang, Yafeng Cai, Jinlei Li, Xianguang Meng, Jia Zhu, Prof. Liang Yu, Prof. Dehui Deng","doi":"10.1002/anie.202412049","DOIUrl":null,"url":null,"abstract":"<p>Enabling high-efficiency solar thermal conversion (STC) at catalytic active site is critical but challenging for harnessing solar energy to boost catalytic reactions. Herein, we report the direct integration of full-spectrum STC and high electrocatalytic oxygen evolution activity by fabricating a hierarchical nanocage architecture composed of graphene-encapsulated CoNi nanoparticle. This catalyst exhibits a near-complete 98 % absorptivity of solar spectrum and a high STC efficiency of 97 %, which is superior than previous solar thermal catalytic materials. It delivers a remarkable potential decrease of over 240 mV at various current densities for electrocatalytic oxygen evolution under solar illumination, which is practically unachievable via traditionally heating the system. The high-efficiency STC is enabled by a synergy between the regulated electronic structure of graphene via CoNi-carbon interaction and the multiple absorption of lights by the light-trapping nanocage. Theoretical calculations suggest that high temperature-induced vibrational free energy gain promotes the potential-limiting *O to *OOH step, which decreases the overpotential for oxygen evolution.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enabling high-efficiency solar thermal conversion (STC) at catalytic active site is critical but challenging for harnessing solar energy to boost catalytic reactions. Herein, we report the direct integration of full-spectrum STC and high electrocatalytic oxygen evolution activity by fabricating a hierarchical nanocage architecture composed of graphene-encapsulated CoNi nanoparticle. This catalyst exhibits a near-complete 98 % absorptivity of solar spectrum and a high STC efficiency of 97 %, which is superior than previous solar thermal catalytic materials. It delivers a remarkable potential decrease of over 240 mV at various current densities for electrocatalytic oxygen evolution under solar illumination, which is practically unachievable via traditionally heating the system. The high-efficiency STC is enabled by a synergy between the regulated electronic structure of graphene via CoNi-carbon interaction and the multiple absorption of lights by the light-trapping nanocage. Theoretical calculations suggest that high temperature-induced vibrational free energy gain promotes the potential-limiting *O to *OOH step, which decreases the overpotential for oxygen evolution.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.