Harnessing the Synergistic Interplay between Atomic-Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-04 DOI:10.1002/anie.202414989
Shenghua Ye, Wenda Chen, Zhijun Ou, Qinghao Zhang, Jie Zhang, Yongliang Li, Xiangzhong Ren, Xiaoping Ouyang, Lirong Zheng, Xueqing Yan, Jianhong Liu, Qianling Zhang
{"title":"Harnessing the Synergistic Interplay between Atomic-Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance.","authors":"Shenghua Ye, Wenda Chen, Zhijun Ou, Qinghao Zhang, Jie Zhang, Yongliang Li, Xiangzhong Ren, Xiaoping Ouyang, Lirong Zheng, Xueqing Yan, Jianhong Liu, Qianling Zhang","doi":"10.1002/anie.202414989","DOIUrl":null,"url":null,"abstract":"<p><p>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt-based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni-doped vacancy-rich Pt nanoparticles anchored on nitrogen-doped graphene (Vac-NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic-scale vacancies in the Pt NPs induces long-range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic-scale vacancies mainly contributed the tolerance performances towards CO and CH<sub>3</sub>OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic-scale vacancies and ligand effect, as-prepared Vac-NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal-based nanomaterials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414989"},"PeriodicalIF":16.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414989","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt-based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni-doped vacancy-rich Pt nanoparticles anchored on nitrogen-doped graphene (Vac-NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic-scale vacancies in the Pt NPs induces long-range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic-scale vacancies mainly contributed the tolerance performances towards CO and CH3OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic-scale vacancies and ligand effect, as-prepared Vac-NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal-based nanomaterials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原子级空位和配体效应之间的协同作用,优化氧气还原活性和耐受性能。
缺陷工程是调节纳米材料电催化的一种有效策略,但很少有人考虑用它来调节氧还原反应(ORR)的铂基电催化剂。在本研究中,我们设计了锚定在掺氮石墨烯上的掺镍富空位铂纳米粒子(Vac-NiPt NPs/NG),铂负载量低至 3.5 wt.%,镍/铂比为 0.038:1。实验结果和理论计算表明,原子尺度的空位主要促进了对 CO 和 CH3OH 的耐受性能,掺杂少量镍产生的配位效应加速了从 *O 到 *OH 物种的转化,从而在不影响耐受性能的情况下提高了 ORR 活性。得益于原子尺度空位和配体效应之间的协同作用,制备的 Vac-NiPt NPs/NG 表现出更高的 ORR 活性、足够的耐受能力和出色的耐久性。这项研究为调节金属基纳米材料的电催化活性提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Molecular‐level Modulation of N, S‐co‐doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene Copper‐Catalyzed Regioselective and Enantioselective Hydropyridylation of Dienes for the Synthesis of Chiral Diaryl Compounds via Concerted Nucleophilic Aromatic Substitution Ultrafast Luminescence Detection with Selective Adsorption of Carbon Disulfide in a Gold(I) Metal−Organic Framework General and Fast Gas–Solid Synthesis of Functional MXenes and Derivatives on the Scale of Tens of Grams Mechanochromic Organic Micro‐Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1