Advanced PEI/PAN Membrane to Suppress Zinc Dendrite Growth in Zinc Metal Batteries

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-09-04 DOI:10.1002/asia.202400828
Arshad Hussain, Mostafa M. Mohamed, Muhammad Omer Aijaz, Mohammad Rezaul Karim, Atif Saeed Alzahrani, Md. Abdul Aziz
{"title":"Advanced PEI/PAN Membrane to Suppress Zinc Dendrite Growth in Zinc Metal Batteries","authors":"Arshad Hussain,&nbsp;Mostafa M. Mohamed,&nbsp;Muhammad Omer Aijaz,&nbsp;Mohammad Rezaul Karim,&nbsp;Atif Saeed Alzahrani,&nbsp;Md. Abdul Aziz","doi":"10.1002/asia.202400828","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-ion batteries (AZIBs) are a potential new technology in energy storage due to their high energy density, affordability, and environmental friendliness. The development of AZIBs is still hampered by unchecked zinc dendrite formation during cycling, which results in an unstable interface, a short cycling life, and a considerable capacity decline with security issues. Herein, we demonstrate a novel nanofiber membrane based on polyetherimide-polyacrylonitrile (PEI/PAN) polymer via electrospinning method with entangled nanofibers for AZIBs applications. The as-fabricated PEI/PAN membrane has a homogeneous, tortuous, and linked porous structure, high porosity, and superior electrolyte wettability. The resulting PEI/PAN membrane exhibits a decent thermal stability of 200 °C and a strong ionic conductivity of up to 5.3×10<sup>−4</sup> S cm<sup>−1</sup>. This membrane gives Zn/Zn symmetric cells an ultralong cycle life of more than 250 hours at 3 mA cm<sup>−2</sup>. In the meantime, the MnO<sub>2</sub>/Zn cell outperforms commercial filter paper regarding cycle stability and rate performance. This work demonstrates the design of a straightforward technique to fabricate advanced nanofiber membranes for AZIBs to modify Zn<sup>2+</sup> deposition behavior and improve Zn dendrite resistance.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"19 23","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/asia.202400828","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) are a potential new technology in energy storage due to their high energy density, affordability, and environmental friendliness. The development of AZIBs is still hampered by unchecked zinc dendrite formation during cycling, which results in an unstable interface, a short cycling life, and a considerable capacity decline with security issues. Herein, we demonstrate a novel nanofiber membrane based on polyetherimide-polyacrylonitrile (PEI/PAN) polymer via electrospinning method with entangled nanofibers for AZIBs applications. The as-fabricated PEI/PAN membrane has a homogeneous, tortuous, and linked porous structure, high porosity, and superior electrolyte wettability. The resulting PEI/PAN membrane exhibits a decent thermal stability of 200 °C and a strong ionic conductivity of up to 5.3×10−4 S cm−1. This membrane gives Zn/Zn symmetric cells an ultralong cycle life of more than 250 hours at 3 mA cm−2. In the meantime, the MnO2/Zn cell outperforms commercial filter paper regarding cycle stability and rate performance. This work demonstrates the design of a straightforward technique to fabricate advanced nanofiber membranes for AZIBs to modify Zn2+ deposition behavior and improve Zn dendrite resistance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制锌金属电池中锌枝晶生长的先进 PEI/PAN 膜。
锌离子水电池(AZIBs)具有能量密度高、经济实惠和环保等优点,是一种潜在的新型储能技术。循环过程中锌枝晶的形成如果得不到控制,仍会阻碍 AZIB 的发展,导致界面不稳定、循环寿命短、容量大幅下降以及安全性问题。在此,我们展示了一种新型纳米纤维膜,该膜基于聚乙烯亚胺-聚丙烯腈(PEI-PAN)聚合物,通过电纺丝产生缠结纳米纤维,可用于 AZIBs。制成的 PEI/PAN 膜具有均匀、迂回和连通的多孔结构,孔隙率高,电解质浸润性优异。PEI/PAN 膜在 200 °C 下具有良好的热稳定性,离子导电率高达 5.3 x 10-4 S cm-1。这种膜为 Zn/Zn 对称电池提供了超长的循环寿命,在 3 mA cm-2 的条件下可使用 250 小时以上。此外,MnO2/Zn 电池在循环稳定性和速率性能方面优于商用滤纸。这项工作展示了一种用于制造 AZIB 先进纳米纤维膜的简单技术,可改变 Zn2+ 沉积行为并提高抗 Zn 树枝的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Organophotocatalytic Oxidative Annulation of Phosphoryl Arylhydrazones to Access Indazoles Structure–Activity Relationships in Ru(II)-Protic-NHC Complexes: β- Versus γ-Substituent Effects on Formic Acid Dehydrogenation Performance Total Synthesis of Conjugation-Ready Tetrasaccharide Repeating Units of Pseudomonas Aeruginosa (Lányi) O11 Non-Classical Hybridization Chain Reactions Homogenous Catalysis for Ammonia-Borane Dehydrogenation by Transition Metal-Based Complexes: A Mini Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1