A semi-automated workflow for DIA-based global discovery to pathway-driven PRM analysis.

IF 3.4 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Proteomics Pub Date : 2024-09-05 DOI:10.1002/pmic.202400129
Jennifer Guergues, Jessica Wohlfahrt, John M Koomen, Jonathan R Krieger, Sameer Varma, Stanley M Stevens
{"title":"A semi-automated workflow for DIA-based global discovery to pathway-driven PRM analysis.","authors":"Jennifer Guergues, Jessica Wohlfahrt, John M Koomen, Jonathan R Krieger, Sameer Varma, Stanley M Stevens","doi":"10.1002/pmic.202400129","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted proteomics, which includes parallel reaction monitoring (PRM), is typically utilized for more precise detection and quantitation of key proteins and/or pathways derived from complex discovery proteomics datasets. Initial discovery-based analysis using data independent acquisition (DIA) can obtain deep proteome coverage with low data missingness while targeted PRM assays can provide additional benefits in further eliminating missing data and optimizing measurement precision. However, PRM method development from bioinformatic predictions can be tedious and time-consuming because of the DIA output complexity. We address this limitation with a Python script that rapidly generates a PRM method for the TIMS-TOF platform using DIA data and a user-defined target list. To evaluate the script, DIA data obtained from HeLa cell lysate (200 ng, 45-min gradient method) as well as canonical pathway information from Ingenuity Pathway Analysis was utilized to generate a pathway-driven PRM method. Subsequent PRM analysis of targets within the example pathway, regulation of apoptosis, resulted in improved chromatographic data and enhanced quantitation precision (100% peptides below 10% CV with a median CV of 2.9%, n = 3 technical replicates). The script is freely available at https://github.com/StevensOmicsLab/PRM-script and provides a framework that can be adapted to multiple DDA/DIA data outputs and instrument-specific PRM method types.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e2400129"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400129","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted proteomics, which includes parallel reaction monitoring (PRM), is typically utilized for more precise detection and quantitation of key proteins and/or pathways derived from complex discovery proteomics datasets. Initial discovery-based analysis using data independent acquisition (DIA) can obtain deep proteome coverage with low data missingness while targeted PRM assays can provide additional benefits in further eliminating missing data and optimizing measurement precision. However, PRM method development from bioinformatic predictions can be tedious and time-consuming because of the DIA output complexity. We address this limitation with a Python script that rapidly generates a PRM method for the TIMS-TOF platform using DIA data and a user-defined target list. To evaluate the script, DIA data obtained from HeLa cell lysate (200 ng, 45-min gradient method) as well as canonical pathway information from Ingenuity Pathway Analysis was utilized to generate a pathway-driven PRM method. Subsequent PRM analysis of targets within the example pathway, regulation of apoptosis, resulted in improved chromatographic data and enhanced quantitation precision (100% peptides below 10% CV with a median CV of 2.9%, n = 3 technical replicates). The script is freely available at https://github.com/StevensOmicsLab/PRM-script and provides a framework that can be adapted to multiple DDA/DIA data outputs and instrument-specific PRM method types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从基于 DIA 的全球发现到通路驱动的 PRM 分析的半自动化工作流程。
包括平行反应监测(PRM)在内的靶向蛋白质组学通常用于对复杂的发现蛋白质组学数据集中的关键蛋白质和/或通路进行更精确的检测和定量。使用数据独立采集(DIA)进行基于发现的初步分析,可以获得深度蛋白质组覆盖率和低数据缺失率,而有针对性的 PRM 检测可以在进一步消除缺失数据和优化测量精度方面提供额外的好处。然而,由于 DIA 输出的复杂性,根据生物信息学预测开发 PRM 方法可能既繁琐又耗时。我们利用 Python 脚本解决了这一局限性,该脚本可使用 DIA 数据和用户定义的目标列表为 TIMS-TOF 平台快速生成 PRM 方法。为了评估该脚本,我们利用从 HeLa 细胞裂解液(200 毫微克,45 分钟梯度法)中获得的 DIA 数据以及从 Ingenuity Pathway Analysis 中获得的典型通路信息来生成通路驱动的 PRM 方法。随后对示例通路(细胞凋亡调控)中的靶标进行 PRM 分析,改进了色谱数据并提高了定量精度(100% 肽的 CV 值低于 10%,中位 CV 值为 2.9%,n = 3 次技术重复)。该脚本可在 https://github.com/StevensOmicsLab/PRM-script 免费获取,它提供的框架可适用于多种 DDA/DIA 数据输出和特定仪器的 PRM 方法类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomics
Proteomics 生物-生化研究方法
CiteScore
6.30
自引率
5.90%
发文量
193
审稿时长
3 months
期刊介绍: PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.
期刊最新文献
Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease. The Proteomic Landscape of the Coronary Accessible Heart Cell Surfaceome. Decoding Microbial Plastic Colonisation: Multi-Omic Insights Into the Fast-Evolving Dynamics of Early-Stage Biofilms. Fecal Metaproteomics as a Tool to Monitor Functional Modifications Induced in the Gut Microbiota by Ketogenic Diet: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1