{"title":"Electronic Engineering of Crystalline/Amorphous CoP/FeCoP<sub>x</sub> Nanoarrays for Efficient Water Electrolysis.","authors":"Jinyang Zhang, Yujing Zhang, Jiayi Zhou, Haoran Guo, Limin Qi","doi":"10.1002/smtd.202401139","DOIUrl":null,"url":null,"abstract":"<p><p>The development of bifunctional, non-noble metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through morphology and electronic engineering is highly attractive for efficient water splitting. Herein, hierarchical nanoarrays consisting of crystalline cobalt phosphide nanorods covered by amorphous Fe-doped cobalt phosphide nanocuboids (CoP/FeCoP<sub>x</sub>) are constructed as bifunctional catalysts for both HER and OER. Experimental results and theoretical calculations reveal that the catalysts exhibit balanced dual-catalytic properties due to simultaneous introduction of Fe doping and phosphorus vacancies, leading to an optimized electronic structure of the CoP/FeCoP<sub>x</sub>. Furthermore, the hierarchical nanoarrays made of crystalline/amorphous heterostructures significantly enhance the performance of the electrocatalysts. As a result, the CoP/FeCoP<sub>x</sub> catalyst demonstrates remarkable performance in both HER and OER, with overpotentials of 74 and 237 mV at 10 mA cm<sup>-2</sup> in 1 m KOH, respectively, as well as a low cell voltage of 1.53 V at 10 mA cm<sup>-2</sup> for alkaline overall water splitting. This work integrates the morphology engineering involving design of hierarchical crystalline/amorphous nanoarrays and the electronic engineering through Fe doping and phosphorus vacancies for efficient water electrolysis. It may open a new route toward rational design and feasible fabrication of high-performance, multifunctional, non-noble metal-based electrocatalysts for energy conversion.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401139","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of bifunctional, non-noble metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through morphology and electronic engineering is highly attractive for efficient water splitting. Herein, hierarchical nanoarrays consisting of crystalline cobalt phosphide nanorods covered by amorphous Fe-doped cobalt phosphide nanocuboids (CoP/FeCoPx) are constructed as bifunctional catalysts for both HER and OER. Experimental results and theoretical calculations reveal that the catalysts exhibit balanced dual-catalytic properties due to simultaneous introduction of Fe doping and phosphorus vacancies, leading to an optimized electronic structure of the CoP/FeCoPx. Furthermore, the hierarchical nanoarrays made of crystalline/amorphous heterostructures significantly enhance the performance of the electrocatalysts. As a result, the CoP/FeCoPx catalyst demonstrates remarkable performance in both HER and OER, with overpotentials of 74 and 237 mV at 10 mA cm-2 in 1 m KOH, respectively, as well as a low cell voltage of 1.53 V at 10 mA cm-2 for alkaline overall water splitting. This work integrates the morphology engineering involving design of hierarchical crystalline/amorphous nanoarrays and the electronic engineering through Fe doping and phosphorus vacancies for efficient water electrolysis. It may open a new route toward rational design and feasible fabrication of high-performance, multifunctional, non-noble metal-based electrocatalysts for energy conversion.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.