Wnt Signaling Modulators Exhibit Neuroprotective Effects via Combating Astrogliosis and Balancing Synaptic Density at Early and Late Stage Temporal Lobe Epilepsy

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2024-09-05 DOI:10.1007/s11064-024-04236-3
Kajal Rawat, Vipasha Gautam, Arushi Sandhu, Anil Kumar, Antika Sharma, Alka Bhatia, Lekha Saha
{"title":"Wnt Signaling Modulators Exhibit Neuroprotective Effects via Combating Astrogliosis and Balancing Synaptic Density at Early and Late Stage Temporal Lobe Epilepsy","authors":"Kajal Rawat,&nbsp;Vipasha Gautam,&nbsp;Arushi Sandhu,&nbsp;Anil Kumar,&nbsp;Antika Sharma,&nbsp;Alka Bhatia,&nbsp;Lekha Saha","doi":"10.1007/s11064-024-04236-3","DOIUrl":null,"url":null,"abstract":"<div><p>Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3β inhibitor 6-bromoindirubin-3’-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/β-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"49 11","pages":"3156 - 3175"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04236-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Temporal Lobe Epilepsy (TLE) is a severe neurological condition characterized by recurrent seizures that often do not respond well to available anti-seizure medications. TLE has been associated with epileptogenesis, a process that starts during the latent period following a neurologic insult and is followed by chronic phase. Recent research has linked canonical Wnt signaling to the pathophysiology of epileptogenesis and TLE. Our previous study demonstrated differential regulation of canonical Wnt signaling during early and late stage post status epilepticus (SE) induction. Building on these findings, our current study utilized Wnt modulators: GSK-3β inhibitor 6-bromoindirubin-3’-oxime (6-Bio) and disheveled inhibitor niclosamide and investigated their impact on canonical Wnt signaling during the early (30 days) and later stages (60 days) following SE induction. We assessed several parameters, including seizure frequency, astrogliosis, synaptic density, and neuronal counts in hippocampal tissue. We used immunohistochemistry and Nissl staining to evaluate gliosis, synaptic density, and neuronal counts in micro-dissected hippocampi. Western blotting was used to examine the expression of proteins involved in canonical Wnt/β-catenin signaling, and real-time PCR was conducted to analyze their relative mRNA expression. Wnt modulators, 6-Bio and Niclosamide were found to reduce seizure frequency and various other parameters including behavioral parameters, hippocampal morphology, astrogliosis and synaptic density at different stages of TLE.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wnt信号调节剂通过抑制星形胶质细胞增生和平衡颞叶癫痫早期和晚期的突触密度发挥神经保护作用
颞叶癫痫(TLE)是一种严重的神经系统疾病,其特点是反复发作,对现有的抗癫痫药物往往反应不佳。颞叶癫痫与癫痫发生有关,癫痫发生过程始于神经系统损伤后的潜伏期,随后进入慢性期。最近的研究将典型 Wnt 信号与癫痫发生和 TLE 的病理生理学联系起来。我们之前的研究表明,在癫痫状态(SE)诱发后的早期和晚期阶段,典型 Wnt 信号的调控存在差异。基于这些发现,我们目前的研究利用了 Wnt 调节剂:GSK-3β抑制剂6-溴靛红-3'-肟(6-Bio)和disheveled抑制剂烟酰胺,研究了它们对SE诱导后早期(30天)和晚期(60天)典型Wnt信号的影响。我们评估了几个参数,包括癫痫发作频率、星形胶质细胞增多、突触密度和海马组织中的神经元数量。我们使用免疫组化和Nissl染色来评估显微解剖海马的胶质细胞增生、突触密度和神经元数量。Western印迹法检测了参与典型Wnt/β-catenin信号转导的蛋白质的表达,实时PCR分析了它们的相对mRNA表达。研究发现,Wnt调节剂、6-Bio和Niclosamide能降低TLE不同阶段的发作频率和其他各种参数,包括行为参数、海马形态、星形胶质细胞增生和突触密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Chaperone-Mediated Autophagy Alleviates Cerebral Ischemia–Reperfusion Injury by Inhibiting P53-Mediated Mitochondria-Associated Apoptosis Neuroprotective Effect of Maresin-1 in Rotenone-Induced Parkinson’s Disease in Rats: The Putative Role of the JAK/STAT Pathway Dimethyl Fumarate Reduces Methylglyoxal-derived Carbonyl Stress Through Nrf2/GSH Activation in SH-SY5Y Cells Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons Maresin-1 Ameliorates Sepsis-Induced Microglial Activation Through Modulation of the P38 MAPK Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1