Dynamic features of virus protein 1 and substitutions in the 3-phenyl ring determine the potency and broad-spectrum activity of capsid-binding pyrazolo[3,4-d]pyrimidines against rhinoviruses

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2024-09-03 DOI:10.1016/j.antiviral.2024.105993
Martina Richter , Maria Khrenova , Elena Kazakova , Olga Riabova , Anna Egorova , Vadim Makarov , Michaela Schmidtke
{"title":"Dynamic features of virus protein 1 and substitutions in the 3-phenyl ring determine the potency and broad-spectrum activity of capsid-binding pyrazolo[3,4-d]pyrimidines against rhinoviruses","authors":"Martina Richter ,&nbsp;Maria Khrenova ,&nbsp;Elena Kazakova ,&nbsp;Olga Riabova ,&nbsp;Anna Egorova ,&nbsp;Vadim Makarov ,&nbsp;Michaela Schmidtke","doi":"10.1016/j.antiviral.2024.105993","DOIUrl":null,"url":null,"abstract":"<div><p>Pyrazolo[3,4-<em>d</em>]pyrimidines represent one potent class of well tolerated and highly active rhinovirus (RV) inhibitors that act as capsid binders. The lead compound OBR-5-340 inhibits a broad-spectrum of RVs. Aiming to improve lead activity, we evaluated the impact of structural modifications in the 3-phenyl ring of OBR-5-340 on its potency and spectrum of anti-RV activity <em>vitro</em>. Our results demonstrate the crucial role of substitution at position 4 for strong, broad-spectrum anti-RV activity. The 4-methyl (RCB23137) and 4-chloro (RCB23138) derivatives outperformed OBR-5-340 in terms of potency and anti-RV activity spectrum. Based on these findings, the compounds were selected for computational binding studies. Molecular dynamic simulations with six RVs differing in OBR-5-340, RCB23137, and RCB23138 sensitivity proved the impact of dynamic features of two VP1 loops enveloping these inhibitors on antiviral potency.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 105993"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016635422400202X/pdfft?md5=b1c2a35e05455c411efbb1f2c1d4fecc&pid=1-s2.0-S016635422400202X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016635422400202X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyrazolo[3,4-d]pyrimidines represent one potent class of well tolerated and highly active rhinovirus (RV) inhibitors that act as capsid binders. The lead compound OBR-5-340 inhibits a broad-spectrum of RVs. Aiming to improve lead activity, we evaluated the impact of structural modifications in the 3-phenyl ring of OBR-5-340 on its potency and spectrum of anti-RV activity vitro. Our results demonstrate the crucial role of substitution at position 4 for strong, broad-spectrum anti-RV activity. The 4-methyl (RCB23137) and 4-chloro (RCB23138) derivatives outperformed OBR-5-340 in terms of potency and anti-RV activity spectrum. Based on these findings, the compounds were selected for computational binding studies. Molecular dynamic simulations with six RVs differing in OBR-5-340, RCB23137, and RCB23138 sensitivity proved the impact of dynamic features of two VP1 loops enveloping these inhibitors on antiviral potency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
病毒蛋白 1 的动态特征和 3-苯基环的取代决定了与囊膜结合的吡唑并[3,4-d]嘧啶对鼻病毒的效力和广谱活性。
吡唑并[3,4-d]嘧啶类化合物是一类耐受性好、活性高的鼻病毒(RV)抑制剂,可作为病毒盖粘合剂。先导化合物 OBR-5-340 可抑制多种鼻病毒。为了提高先导化合物的活性,我们评估了 OBR-5-340 的 3 苯环结构修饰对其药效和体外抗 RV 活性谱的影响。我们的研究结果表明,第 4 位的取代对于强效、广谱的抗 RV 活性起着至关重要的作用。4-甲基(RCB23137)和 4-氯(RCB23138)衍生物在药效和抗 RV 活性谱方面优于 OBR-5-340。基于这些发现,我们选择了这些化合物进行计算结合研究。用六种对 OBR-5-340、RCB23137 和 RCB23138 敏感性不同的 RV 进行分子动力学模拟,证明了包覆这些抑制剂的两个 VP1 环的动态特征对抗病毒效力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
Development of lipopeptide-based HIV-1/2 fusion inhibitors targeting the gp41 pocket site with a new design strategy. Preventing human influenza and coronaviral mono or coinfection by blocking virus-induced sialylation. Biological characterization of AB-343, a novel and potent SARS-CoV-2 Mpro inhibitor with pan-coronavirus activity Edible bird's nest: N- and O-glycan analysis and synergistic anti-avian influenza virus activity with neuraminidase inhibitors. X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1