{"title":"Fibroblast growth factor 21 alleviates acetaminophen induced acute liver injury by activating Sirt1 mediated autophagy","authors":"","doi":"10.1016/j.cellsig.2024.111379","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aims</h3><p>Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved.</p></div><div><h3>Methods</h3><p>The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level.</p></div><div><h3>Results</h3><p>FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP.</p></div><div><h3>Conclusion</h3><p>FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.</p></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824003474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved.
Methods
The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level.
Results
FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP.
Conclusion
FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.