The LUTADOSE trial: tumour dosimetry after the first administration predicts progression free survival in gastro-entero-pancreatic neuroendocrine tumours (GEP NETs) patients treated with [177Lu]Lu-DOTATATE.
Marco Maccauro, Mariarosaria Cuomo, Matteo Bauckneht, Matteo Bagnalasta, Stefania Mazzaglia, Federica Scalorbi, Giovanni Argiroffi, Margarita Kirienko, Alice Lorenzoni, Gianluca Aliberti, Sara Pusceddu, Calareso Giuseppina, Garanzini Enrico Matteo, Ettore Seregni, Carlo Chiesa
{"title":"The LUTADOSE trial: tumour dosimetry after the first administration predicts progression free survival in gastro-entero-pancreatic neuroendocrine tumours (GEP NETs) patients treated with [<sup>177</sup>Lu]Lu-DOTATATE.","authors":"Marco Maccauro, Mariarosaria Cuomo, Matteo Bauckneht, Matteo Bagnalasta, Stefania Mazzaglia, Federica Scalorbi, Giovanni Argiroffi, Margarita Kirienko, Alice Lorenzoni, Gianluca Aliberti, Sara Pusceddu, Calareso Giuseppina, Garanzini Enrico Matteo, Ettore Seregni, Carlo Chiesa","doi":"10.1007/s00259-024-06863-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In Peptide Receptor Radionuclide Therapy (PRRT) with [<sup>177</sup>Lu]Lu-DOTATATE of gastro-entero-pancreatic neuroendocrine tumours (GEP NETs) a question remains open about the potential benefits of personalised dosimetry. This observational prospective study examines the association of individualized dosimetry with progression free survival (PFS) in G1-G2 GEP NETs patients following the standard [<sup>177</sup>Lu]Lu-DOTATATE therapeutic regimen.</p><p><strong>Methods: </strong>The analysis was conducted on 42 patients administered 4 times, and on 165 lesions. Dosimetry was performed after the first and the forth cycle, with two SPECT/CT scans at day 1 and 7 after administration. Global mean Tumour absorbed Dose of each patient (GTD) was calculated after cycle 1 and 4 as the sum of lesion doses weighted by lesion mass, normalized by the global tumour mass. Cumulative GTD_TOT was calculated as the mean between cycle 1 (GTD_1) and 4 (GTD_4) multiplied by 4. Patients were followed-up for median 32.8 (range 18-45.5) months, through blood tests and contrast enhanced CT (ceCT). This study assessed the correlation between global tumour dose (GTD) and PFS longer or shorter than 24 months. After a ROC analysis, we stratified patients according to the best cut-off value for two additional statistical analyses. At last a multivariate analysis was carried out for PFS > / < 24 months.</p><p><strong>Results: </strong>The median follow-up interval was 33 months, ranging from 18 to 45.5 months. The median PFS was 42 months. The progression free survival rate at 20 months was 90.5%. GTD_1 and GTD_TOT were statistically associated with PFS > / < 24 m (p = 0.026 and p = 0.03 respectively). The stratification of patients on GTD_1 lower or higher than the best cut-off value at 10.6 Gy provided significantly different median PFS of 21 months versus non reached, i.e. longer than 45.5 months (p = 0.004), with a hazard ratio of 8.6, (95% C.I.: [2 - 37]). Using GTD_TOT with the best cut-off at 43 Gy, the same PFS values were obtained as after cycle 1 (p = 0.035). At multivariate analysis, a decrease in GTD_1 and, with lower impact, a higher global tumour volume were significantly associated with PFS < 24 months. We calculated the Tumour Control Probability of obtaining PFS > 24 months as a function of GTD_1.</p><p><strong>Discussion: </strong>Several statistical analyses seem to confirm that simple tumour dosimetry with 2 SPECT/CT scans after the first administration allows to predict PFS values after 4 × 7.4 GBq administrations of <sup>177</sup>Lu[Lu]-DOTATATE in G1-G2 GEP NETs. This result qualitatively confirms recent findings by a Belgian and a French study. However, dosimetric thresholds are different. This probably comes from different cohort baseline characteristics, since the median PFS in our study (42 m) was longer than in the other studies (28 m and 31 m).</p><p><strong>Conclusion: </strong>Tumour dosimetry after the first administration of [<sup>177</sup>Lu]Lu-DOTATATE offers an important prognostic value in the clinical decision-making process, especially for the future as alternative emitters or administration schedule may become available.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":" ","pages":"291-304"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06863-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: In Peptide Receptor Radionuclide Therapy (PRRT) with [177Lu]Lu-DOTATATE of gastro-entero-pancreatic neuroendocrine tumours (GEP NETs) a question remains open about the potential benefits of personalised dosimetry. This observational prospective study examines the association of individualized dosimetry with progression free survival (PFS) in G1-G2 GEP NETs patients following the standard [177Lu]Lu-DOTATATE therapeutic regimen.
Methods: The analysis was conducted on 42 patients administered 4 times, and on 165 lesions. Dosimetry was performed after the first and the forth cycle, with two SPECT/CT scans at day 1 and 7 after administration. Global mean Tumour absorbed Dose of each patient (GTD) was calculated after cycle 1 and 4 as the sum of lesion doses weighted by lesion mass, normalized by the global tumour mass. Cumulative GTD_TOT was calculated as the mean between cycle 1 (GTD_1) and 4 (GTD_4) multiplied by 4. Patients were followed-up for median 32.8 (range 18-45.5) months, through blood tests and contrast enhanced CT (ceCT). This study assessed the correlation between global tumour dose (GTD) and PFS longer or shorter than 24 months. After a ROC analysis, we stratified patients according to the best cut-off value for two additional statistical analyses. At last a multivariate analysis was carried out for PFS > / < 24 months.
Results: The median follow-up interval was 33 months, ranging from 18 to 45.5 months. The median PFS was 42 months. The progression free survival rate at 20 months was 90.5%. GTD_1 and GTD_TOT were statistically associated with PFS > / < 24 m (p = 0.026 and p = 0.03 respectively). The stratification of patients on GTD_1 lower or higher than the best cut-off value at 10.6 Gy provided significantly different median PFS of 21 months versus non reached, i.e. longer than 45.5 months (p = 0.004), with a hazard ratio of 8.6, (95% C.I.: [2 - 37]). Using GTD_TOT with the best cut-off at 43 Gy, the same PFS values were obtained as after cycle 1 (p = 0.035). At multivariate analysis, a decrease in GTD_1 and, with lower impact, a higher global tumour volume were significantly associated with PFS < 24 months. We calculated the Tumour Control Probability of obtaining PFS > 24 months as a function of GTD_1.
Discussion: Several statistical analyses seem to confirm that simple tumour dosimetry with 2 SPECT/CT scans after the first administration allows to predict PFS values after 4 × 7.4 GBq administrations of 177Lu[Lu]-DOTATATE in G1-G2 GEP NETs. This result qualitatively confirms recent findings by a Belgian and a French study. However, dosimetric thresholds are different. This probably comes from different cohort baseline characteristics, since the median PFS in our study (42 m) was longer than in the other studies (28 m and 31 m).
Conclusion: Tumour dosimetry after the first administration of [177Lu]Lu-DOTATATE offers an important prognostic value in the clinical decision-making process, especially for the future as alternative emitters or administration schedule may become available.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.