Hyperoxia disproportionally benefits the aerobic performance of large fish at elevated temperature.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-10-01 Epub Date: 2024-10-04 DOI:10.1242/jeb.247887
Luis L Kuchenmüller, Elizabeth C Hoots, Timothy D Clark
{"title":"Hyperoxia disproportionally benefits the aerobic performance of large fish at elevated temperature.","authors":"Luis L Kuchenmüller, Elizabeth C Hoots, Timothy D Clark","doi":"10.1242/jeb.247887","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247887","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在温度升高的情况下,高氧对大型鱼类的有氧性能有不成比例的好处。
越来越多的证据表明,在同一物种中,体型较大的鱼类比体型较小的鱼类更容易受到急剧变暖的影响。这种热耐受性的大小依赖性被归因于有氧性能的差异,这主要是由于氧气供应相对于需求的下降。为了阐明这些观点,我们研究了130条体重从12克到358克不等的虹鳟在控制条件(17°C)和急性升温(升温至25°C)条件下的代谢异构现象,包括补充氧气和不补充氧气(100%与150%空气饱和度)。在常氧条件下,与17°C相比,高温导致有氧范围平均缩小17%。由于有氧范围的比例指数(b)从17°C时的b=0.87下降到25°C时的b=0.74,因此大鱼的有氧表现不成比例地恶化。在这两种温度下,过氧都能提高最大代谢率和有氧范围,在25°C时,有氧范围的比例指数恢复到与17°C时相同的水平(b=0.86),因此大鱼不成比例地受益。这表明,高氧可能为体型较大的个体提供新陈代谢庇护,使其在面临急剧升温时能够维持有氧活动。值得注意的是,高氧所带来的有氧能力的提高似乎并没有改善热恢复能力,因为在25°C高氧条件下的死亡率(13.8%,n=4)与常氧条件下的死亡率(12.1%,n=4)相似,但我们要提醒的是,这一课题需要更有针对性的研究。我们强调有必要对氧气运输系统进行机理研究,以确定在气候变暖的背景下,不同温度下新陈代谢比例差异的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey. Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum. Skittering locomotion in cricket frogs: a form of porpoising. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1