{"title":"Znrf3 exon 2 deletion mice do not recapitulate congenital adrenal hypoplasia.","authors":"Noboru Uchida, Tomohiro Ishii, Naoko Amano, Shuji Takada, Kyoko Kobayashi, Tomoaki Murakami, Satoshi Narumi, Tomonobu Hasegawa","doi":"10.1530/JME-24-0015","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt/β-catenin signaling is essential for adrenocortical development. Zinc and ring finger 3 (ZNRF3), an E3 ubiquitin ligase that attenuates Wnt/β-catenin signaling, is negatively regulated by R-spondin via an extracellular domain that is partially encoded by exon 2 of ZNRF3. We recently identified ZNRF3 exon 2 deletions in three individuals with congenital adrenal hypoplasia. ZNRF3 exon 2 deletion impairs R-spondin binding, thereby attenuating β-catenin expression and eventually leading to the development of congenital adrenal hypoplasia. To elucidate the influence of ZNRF3/Znrf3 exon 2 deletion on adrenocortical development, we generated homozygous Znrf3 exon 2 deletion (Znrf3Δ2/Δ2) mice. Whereas the adrenal glands of Znrf3Δ2/Δ2 mice did not show gross morphological changes at birth, moderate hyperplasia of the zona fasciculata (ZF), dispersed medulla arrangement, and a radially spreading zone with macrophage infiltration between the ZF and medulla were observed at 6 weeks of age. 20α-hydroxysteroid dehydrogenase, a marker of the adrenal X-zone, was hardly detected by immunostaining, and gene expression was significantly downregulated. The number of activated β-catenin-positive cells decreased in the zona glomerulosa, consistent with the results of in situ hybridization for Axin2, a Wnt/β-catenin target gene. Plasma ACTH and serum corticosterone levels in Znrf3Δ2/Δ2 mice did not differ significantly from those in wild-type mice. These results show a species-specific difference in the effects of ZNRF3/Znrf3 exon 2 deletions in humans and mice; Znrf3Δ2/Δ2 mice do not develop congenital adrenal hypoplasia but instead exhibit moderate ZF hyperplasia, dispersed medulla arrangement, X-zone dysplasia, and macrophage infiltration occurred in the inner cortex.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JME-24-0015","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Wnt/β-catenin signaling is essential for adrenocortical development. Zinc and ring finger 3 (ZNRF3), an E3 ubiquitin ligase that attenuates Wnt/β-catenin signaling, is negatively regulated by R-spondin via an extracellular domain that is partially encoded by exon 2 of ZNRF3. We recently identified ZNRF3 exon 2 deletions in three individuals with congenital adrenal hypoplasia. ZNRF3 exon 2 deletion impairs R-spondin binding, thereby attenuating β-catenin expression and eventually leading to the development of congenital adrenal hypoplasia. To elucidate the influence of ZNRF3/Znrf3 exon 2 deletion on adrenocortical development, we generated homozygous Znrf3 exon 2 deletion (Znrf3Δ2/Δ2) mice. Whereas the adrenal glands of Znrf3Δ2/Δ2 mice did not show gross morphological changes at birth, moderate hyperplasia of the zona fasciculata (ZF), dispersed medulla arrangement, and a radially spreading zone with macrophage infiltration between the ZF and medulla were observed at 6 weeks of age. 20α-hydroxysteroid dehydrogenase, a marker of the adrenal X-zone, was hardly detected by immunostaining, and gene expression was significantly downregulated. The number of activated β-catenin-positive cells decreased in the zona glomerulosa, consistent with the results of in situ hybridization for Axin2, a Wnt/β-catenin target gene. Plasma ACTH and serum corticosterone levels in Znrf3Δ2/Δ2 mice did not differ significantly from those in wild-type mice. These results show a species-specific difference in the effects of ZNRF3/Znrf3 exon 2 deletions in humans and mice; Znrf3Δ2/Δ2 mice do not develop congenital adrenal hypoplasia but instead exhibit moderate ZF hyperplasia, dispersed medulla arrangement, X-zone dysplasia, and macrophage infiltration occurred in the inner cortex.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.