A multiplexed real‐time PCR assay for simultaneous quantification of human immunodeficiency virus and Hepatitis B virus for low‐and‐middle‐ income countries
Djeneba Bocar Fofana , Tenin Aminatou Coulibaly , Mamoudou Maiga , Thuy Nguyen , Joël Gozlan , Zoumana Diarra , Amadou Koné , Yacouba Cissoko , Almoustapha Issiaka Maiga , Claudia A. Hawkins , Robert L. Murphy , Laurence Morand-Joubert , Mahamadou Diakité , Jane L. Holl , Sally M. McFall
{"title":"A multiplexed real‐time PCR assay for simultaneous quantification of human immunodeficiency virus and Hepatitis B virus for low‐and‐middle‐ income countries","authors":"Djeneba Bocar Fofana , Tenin Aminatou Coulibaly , Mamoudou Maiga , Thuy Nguyen , Joël Gozlan , Zoumana Diarra , Amadou Koné , Yacouba Cissoko , Almoustapha Issiaka Maiga , Claudia A. Hawkins , Robert L. Murphy , Laurence Morand-Joubert , Mahamadou Diakité , Jane L. Holl , Sally M. McFall","doi":"10.1016/j.jviromet.2024.115026","DOIUrl":null,"url":null,"abstract":"<div><p>Due to shared routes of transmission, including sexual contact and vertical transmission, HIV-HBV co-infection is common, particularly in sub-Saharan Africa. Measurement of viral load (VL), for both HIV and HBV, plays a critical role for determining their infectious phase and monitoring response to antiviral therapy. Implementation of viral load testing in clinical settings is a significant challenge in resource-limited countries, notably because of cost and availability issues. We designed HIV and HBV primers for conserved regions of the HIV and HBV genomes that were specifically adapted to viral strains circulating in West Africa that are HIV-1 subtype CRF02AG and HBV genotype E. We first validated two monoplex qPCR assays for individual quantification and, then developed a multiplex qPCR for simultaneous quantification of both viruses. HIV RNA and HBV DNA amplification was performed in a single tube using a one-step reverse transcription-PCR reaction with primers and probes targeting both viruses. Performance characteristics such as the quantification range, sensitivity, and specificity of this multiplex qPCR assay were compared to reference qPCR tests for both HIV and HBV viral load quantification. The multiplex assay was validated using clinical samples from co- or mono-infected patients and gave comparable viral load quantification to the HIV and HBV reference test respectively. The multiplex qPCR demonstrated an overall sensitivity of 71.25 % [68.16–74.3] for HBV and 82 % [78.09–85.90] for HIV and an overall specificity of 100 % [94.95–100] for both viruses. Although the overall sensitivities of the HIV and HBV assays were lower than the commercial comparator assays, the sensitivity in the clinical decision range of >1000 copies/mL for HIV was 80 % [71.26–88.73] and >1000 IU/mL for HBV was 100 % [95.51–100] which indicates the test results can be used to guide treatment decisions. This in-house developed multiplex qPCR assay represents a useful diagnostic tool as it can be performed on affordable \"open\" real-time PCR platforms currently used for HIV or SARS-Cov-2 infection surveillance in Mali.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"330 ","pages":"Article 115026"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166093424001502/pdfft?md5=64b2576d2db01c1ff58c5c33ea5545ae&pid=1-s2.0-S0166093424001502-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001502","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to shared routes of transmission, including sexual contact and vertical transmission, HIV-HBV co-infection is common, particularly in sub-Saharan Africa. Measurement of viral load (VL), for both HIV and HBV, plays a critical role for determining their infectious phase and monitoring response to antiviral therapy. Implementation of viral load testing in clinical settings is a significant challenge in resource-limited countries, notably because of cost and availability issues. We designed HIV and HBV primers for conserved regions of the HIV and HBV genomes that were specifically adapted to viral strains circulating in West Africa that are HIV-1 subtype CRF02AG and HBV genotype E. We first validated two monoplex qPCR assays for individual quantification and, then developed a multiplex qPCR for simultaneous quantification of both viruses. HIV RNA and HBV DNA amplification was performed in a single tube using a one-step reverse transcription-PCR reaction with primers and probes targeting both viruses. Performance characteristics such as the quantification range, sensitivity, and specificity of this multiplex qPCR assay were compared to reference qPCR tests for both HIV and HBV viral load quantification. The multiplex assay was validated using clinical samples from co- or mono-infected patients and gave comparable viral load quantification to the HIV and HBV reference test respectively. The multiplex qPCR demonstrated an overall sensitivity of 71.25 % [68.16–74.3] for HBV and 82 % [78.09–85.90] for HIV and an overall specificity of 100 % [94.95–100] for both viruses. Although the overall sensitivities of the HIV and HBV assays were lower than the commercial comparator assays, the sensitivity in the clinical decision range of >1000 copies/mL for HIV was 80 % [71.26–88.73] and >1000 IU/mL for HBV was 100 % [95.51–100] which indicates the test results can be used to guide treatment decisions. This in-house developed multiplex qPCR assay represents a useful diagnostic tool as it can be performed on affordable "open" real-time PCR platforms currently used for HIV or SARS-Cov-2 infection surveillance in Mali.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.