{"title":"Simultaneous iodine and barium imaging with photon-counting CT.","authors":"Xinchen Deng, Devon Richtsmeier, Pierre-Antoine Rodesch, Kris Iniewski, Magdalena Bazalova-Carter","doi":"10.1088/1361-6560/ad7775","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The objective of this study is to explore the capabilities of photon-counting computed tomography (PCCT) in simultaneously imaging and differentiating materials with close atomic numbers, specifically barium (<i>Z</i>= 56) and iodine (<i>Z</i>= 53), which is challenging for conventional computed tomography (CT).<i>Approach.</i>Experiments were conducted using a bench-top PCCT system equipped with a cadmium zinc telluride detector. Various phantom setups and contrast agent concentrations (1%-5%) were employed, along with a biological sample. Energy thresholds were tuned to the K-edge absorption energies of barium (37.4 keV) and iodine (33.2 keV) to capture multi-energy CT images. K-edge decomposition was performed using K-edge subtraction and principal component analysis (PCA) techniques to differentiate and quantify the contrast agents.<i>Main results.</i>The PCCT system successfully differentiated and accurately quantified barium and iodine in both phantom combinations and a biological sample, achieving high correlations (R2≈1) between true and reconstructed concentrations. PCA outperformed K-edge subtraction, particularly in the presence of calcium, by providing superior differentiation between barium and iodine.<i>Significance.</i>This study demonstrates the potential of PCCT for reliable, detailed imaging in both clinical and research settings, particularly for contrast agents with similar atomic numbers. The results suggest that PCCT could offer significant improvements in imaging quality over conventional CT, especially in applications requiring precise material differentiation.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad7775","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.The objective of this study is to explore the capabilities of photon-counting computed tomography (PCCT) in simultaneously imaging and differentiating materials with close atomic numbers, specifically barium (Z= 56) and iodine (Z= 53), which is challenging for conventional computed tomography (CT).Approach.Experiments were conducted using a bench-top PCCT system equipped with a cadmium zinc telluride detector. Various phantom setups and contrast agent concentrations (1%-5%) were employed, along with a biological sample. Energy thresholds were tuned to the K-edge absorption energies of barium (37.4 keV) and iodine (33.2 keV) to capture multi-energy CT images. K-edge decomposition was performed using K-edge subtraction and principal component analysis (PCA) techniques to differentiate and quantify the contrast agents.Main results.The PCCT system successfully differentiated and accurately quantified barium and iodine in both phantom combinations and a biological sample, achieving high correlations (R2≈1) between true and reconstructed concentrations. PCA outperformed K-edge subtraction, particularly in the presence of calcium, by providing superior differentiation between barium and iodine.Significance.This study demonstrates the potential of PCCT for reliable, detailed imaging in both clinical and research settings, particularly for contrast agents with similar atomic numbers. The results suggest that PCCT could offer significant improvements in imaging quality over conventional CT, especially in applications requiring precise material differentiation.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry