Training Intensity Distribution of a 7-Day HIIT Shock Microcycle: Is Time in the "Red Zone" Crucial for Maximizing Endurance Performance? A Randomized Controlled Trial.

IF 4.1 2区 医学 Q1 SPORT SCIENCES Sports Medicine - Open Pub Date : 2024-09-05 DOI:10.1186/s40798-024-00761-1
Tilmann Strepp, Julia C Blumkaitis, Mahdi Sareban, Thomas Leonhard Stöggl, Nils Haller
{"title":"Training Intensity Distribution of a 7-Day HIIT Shock Microcycle: Is Time in the \"Red Zone\" Crucial for Maximizing Endurance Performance? A Randomized Controlled Trial.","authors":"Tilmann Strepp, Julia C Blumkaitis, Mahdi Sareban, Thomas Leonhard Stöggl, Nils Haller","doi":"10.1186/s40798-024-00761-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Various studies have shown that the type of intensity measure affects training intensity distribution (TID) computation. These conclusions arise from studies presenting data from meso- and macrocycles, while microcycles, e.g., high-intensity interval training shock microcycles (HIIT-SM) have been neglected so far. Previous literature has suggested that the time spent in the high-intensity zone, i.e., zone 3 (Z3) or the \"red zone\", during HIIT may be important to achieve improvements in endurance performance parameters. Therefore, this randomized controlled trial aimed to compare the TID based on running velocity (TID<sub>V</sub>), running power (TID<sub>P</sub>) and heart rate (TID<sub>HR</sub>) during a 7-day HIIT-SM. Twenty-nine endurance-trained participant were allocated to a HIIT-SM consisting of 10 HIIT sessions without (HSM, n = 9) or with (HSM + LIT, n = 9) additional low-intensity training or a control group (n = 11). Moreover, we explored relationships between time spent in Z3 determined by running velocity (Z3<sub>V</sub>), running power (Z3<sub>P</sub>), heart rate (Z3<sub>HR</sub>), oxygen uptake ( <math><mrow><mtext>Z</mtext> <msub><mn>3</mn> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </msub> </mrow> </math> ) and changes in endurance performance.</p><p><strong>Results: </strong>Both intervention groups revealed a polarized pattern for TID<sub>V</sub> (HSM: Z1: 38 ± 17, Z2: 16 ± 17, Z3: 46 ± 2%; HSM + LIT: Z1: 59 ± 18, Z2: 14 ± 18, Z3: 27 ± 2%) and TID<sub>P</sub> (Z1: 50 ± 8, Z2: 14 ± 11, Z3: 36 ± 7%; Z1: 62 ± 15, Z2: 12 ± 16, Z3: 26 ± 2%), while TID<sub>HR</sub> (Z1: 48 ± 13, Z2: 26 ± 11, Z3: 26 ± 7%; Z1: 65 ± 17, Z2: 22 ± 18, Z3: 13 ± 4%) showed a pyramidal pattern. Time in Z3<sub>HR</sub> was significantly less compared to Z3<sub>V</sub> and Z3<sub>P</sub> in both intervention groups (all p < 0.01). There was a time x intensity measure interaction for time in Z3 across the 10 HIIT sessions for HSM + LIT (p < 0.001, <sub>p</sub>η<sup>2</sup> = 0.30). Time in Z3<sub>V</sub> and Z3<sub>P</sub> within each single HIIT session remained stable over the training period for both intervention groups. Time in Z3<sub>HR</sub> declined in HSM from the first (47%) to the last (28%) session, which was more pronounced in HSM + LIT (45% to 16%). A moderate dose-response relationship was found for time in Z3<sub>V</sub> and changes in peak power output (r<sub>s</sub> = 0.52, p = 0.028) as well as time trial performance (r<sub>s</sub> = - 0.47, p = 0.049) with no such associations regarding time in Z3<sub>P</sub>, Z3<sub>HR</sub>, and <math><mrow><mtext>Z</mtext> <msub><mn>3</mn> <mrow><mover><mtext>V</mtext> <mo>˙</mo></mover> <msub><mtext>O</mtext> <mn>2</mn></msub> </mrow> </msub> </mrow> </math> .</p><p><strong>Conclusion: </strong>The present study reveals that the type of intensity measure strongly affects TID computation during a HIIT-SM. As heart rate tends to underestimate the intensity during HIIT-SM, heart rate-based training decisions should be made cautiously. In addition, time in Z3<sub>V</sub> was most closely associated with changes in endurance performance. Thus, for evaluating a HIIT-SM, we suggest integrating a comprehensive set of intensity measures. Trial Registration Trial register: Clinicaltrials.gov, registration number: NCT05067426.</p>","PeriodicalId":21788,"journal":{"name":"Sports Medicine - Open","volume":"10 1","pages":"97"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine - Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40798-024-00761-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Various studies have shown that the type of intensity measure affects training intensity distribution (TID) computation. These conclusions arise from studies presenting data from meso- and macrocycles, while microcycles, e.g., high-intensity interval training shock microcycles (HIIT-SM) have been neglected so far. Previous literature has suggested that the time spent in the high-intensity zone, i.e., zone 3 (Z3) or the "red zone", during HIIT may be important to achieve improvements in endurance performance parameters. Therefore, this randomized controlled trial aimed to compare the TID based on running velocity (TIDV), running power (TIDP) and heart rate (TIDHR) during a 7-day HIIT-SM. Twenty-nine endurance-trained participant were allocated to a HIIT-SM consisting of 10 HIIT sessions without (HSM, n = 9) or with (HSM + LIT, n = 9) additional low-intensity training or a control group (n = 11). Moreover, we explored relationships between time spent in Z3 determined by running velocity (Z3V), running power (Z3P), heart rate (Z3HR), oxygen uptake ( Z 3 V ˙ O 2 ) and changes in endurance performance.

Results: Both intervention groups revealed a polarized pattern for TIDV (HSM: Z1: 38 ± 17, Z2: 16 ± 17, Z3: 46 ± 2%; HSM + LIT: Z1: 59 ± 18, Z2: 14 ± 18, Z3: 27 ± 2%) and TIDP (Z1: 50 ± 8, Z2: 14 ± 11, Z3: 36 ± 7%; Z1: 62 ± 15, Z2: 12 ± 16, Z3: 26 ± 2%), while TIDHR (Z1: 48 ± 13, Z2: 26 ± 11, Z3: 26 ± 7%; Z1: 65 ± 17, Z2: 22 ± 18, Z3: 13 ± 4%) showed a pyramidal pattern. Time in Z3HR was significantly less compared to Z3V and Z3P in both intervention groups (all p < 0.01). There was a time x intensity measure interaction for time in Z3 across the 10 HIIT sessions for HSM + LIT (p < 0.001, pη2 = 0.30). Time in Z3V and Z3P within each single HIIT session remained stable over the training period for both intervention groups. Time in Z3HR declined in HSM from the first (47%) to the last (28%) session, which was more pronounced in HSM + LIT (45% to 16%). A moderate dose-response relationship was found for time in Z3V and changes in peak power output (rs = 0.52, p = 0.028) as well as time trial performance (rs = - 0.47, p = 0.049) with no such associations regarding time in Z3P, Z3HR, and Z 3 V ˙ O 2 .

Conclusion: The present study reveals that the type of intensity measure strongly affects TID computation during a HIIT-SM. As heart rate tends to underestimate the intensity during HIIT-SM, heart rate-based training decisions should be made cautiously. In addition, time in Z3V was most closely associated with changes in endurance performance. Thus, for evaluating a HIIT-SM, we suggest integrating a comprehensive set of intensity measures. Trial Registration Trial register: Clinicaltrials.gov, registration number: NCT05067426.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
7 天 HIIT 冲击微循环的训练强度分布:红区 "时间对最大化耐力表现至关重要吗?随机对照试验。
背景:多项研究表明,强度测量的类型会影响训练强度分布(TID)的计算。这些结论来自于中周期和大周期数据的研究,而微循环,如高强度间歇训练冲击微循环(HIIT-SM)迄今为止一直被忽视。以往的文献表明,在高强度间歇训练过程中,花费在高强度区(即第 3 区(Z3)或 "红区")的时间对于改善耐力表现参数可能非常重要。因此,本随机对照试验旨在比较 7 天 HIIT-SM 中基于跑步速度(TIDV)、跑步功率(TIDP)和心率(TIDHR)的 TID。29 名接受过耐力训练的参与者被分配到一个 HIIT-SM 组,其中包括 10 次 HIIT 训练(无 HSM,n = 9)或附加低强度训练(HSM + LIT,n = 9),或一个对照组(n = 11)。此外,我们还探讨了根据跑步速度(Z3V)、跑步功率(Z3P)、心率(Z3HR)、摄氧量(Z 3 V ˙ O 2)确定的 Z3 时间与耐力表现变化之间的关系:两个干预组的 TIDV(HSM:Z1:38 ± 17,Z2:16 ± 17,Z3:46 ± 2%;HSM + LIT:Z1:59 ± 18,Z2:14 ± 18,Z3:27 ± 2%)和 TIDP(Z1:50 ± 8,Z2:Z1:62 ± 15,Z2:12 ± 16,Z3:26 ± 2%),而 TIDHR(Z1:48 ± 13,Z2:26 ± 11,Z3:26 ± 7%;Z1:65 ± 17,Z2:22 ± 18,Z3:13 ± 4%)呈现金字塔型。与 Z3V 和 Z3P 相比,两个干预组的 Z3HR 时间都明显减少(所有 p pη2 = 0.30)。在每个单次 HIIT 训练中,两个干预组的 Z3V 和 Z3P 时间在整个训练期间保持稳定。在 HSM 组中,Z3HR 时间从第一节(47%)下降到最后一节(28%),这在 HSM + LIT 组中更为明显(从 45% 下降到 16%)。研究发现,Z3V 时间与峰值功率输出变化(rs = 0.52,p = 0.028)以及计时赛成绩(rs = - 0.47,p = 0.049)之间存在中度剂量反应关系,而 Z3P、Z3HR 和 Z 3 V ˙ O 2 时间之间则没有这种关系:本研究表明,强度测量的类型对 HIIT-SM 期间 TID 的计算有很大影响。由于心率往往会低估 HIIT-SM 时的强度,因此应谨慎做出基于心率的训练决策。此外,Z3V 时间与耐力表现的变化关系最为密切。因此,在评估 HIIT-SM 时,我们建议整合一套全面的强度测量方法。试验注册 试验注册:Clinicaltrials.gov,注册号:NCT05067426:NCT05067426。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sports Medicine - Open
Sports Medicine - Open SPORT SCIENCES-
CiteScore
7.00
自引率
4.30%
发文量
142
审稿时长
13 weeks
期刊最新文献
Sleeping Beauty? A Prospective Study on the Prevalence of Sleep Problems and Their Potential Determinants in Professional Dancers. Correction: Sex Differences in Performance and Performance-Determining Factors in the Olympic Winter Endurance Sports. Critical Fluctuations as an Early Warning Signal of Sports Injuries? A Proof of Concept Using Football Monitoring Data. The Use of Extended Reality Technologies in Sport Perceptual-Cognitive Skill Research: A Systematic Scoping Review. Association Between Inter-Limb Asymmetry and Determinants of Middle- and Long-distance Running Performance in Healthy Populations: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1