Queuosine salvage in Bartonella henselae Houston 1: a unique evolutionary path.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2024-09-01 DOI:10.1099/mic.0.001490
Samia Quaiyum, Yifeng Yuan, Guangxin Sun, R M Madhushi N Ratnayake, Geoffrey Hutinet, Peter C Dedon, Michael F Minnick, Valérie de Crécy-Lagard
{"title":"Queuosine salvage in <i>Bartonella henselae</i> Houston 1: a unique evolutionary path.","authors":"Samia Quaiyum, Yifeng Yuan, Guangxin Sun, R M Madhushi N Ratnayake, Geoffrey Hutinet, Peter C Dedon, Michael F Minnick, Valérie de Crécy-Lagard","doi":"10.1099/mic.0.001490","DOIUrl":null,"url":null,"abstract":"<p><p>Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen <i>Bartonella henselae</i>, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ<sub>1</sub> to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen <i>Chlamydia trachomatis</i>. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ<sub>1</sub> rather than q. Intriguingly, MS analyses of tRNA modification profiles in <i>B. henselae</i> reveal trace amounts of preQ<sub>1</sub>, previously not observed in a natural context. Complementation analysis demonstrates that <i>B. henselae</i> bTGT and QPTR not only utilize preQ<sub>1</sub>, akin to their <i>Escherichia coli</i> counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in <i>B. henselae</i> could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q <i>de novo</i> to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ<sub>1</sub> confers fitness advantages when <i>B. henselae</i> is growing outside a mammalian host.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001490","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, MS analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 confers fitness advantages when B. henselae is growing outside a mammalian host.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
休斯顿 1 号鸡巴顿氏菌中的奎宁苷挽救:一条独特的进化之路。
奎乌新(Q)是唯一可通过挽救途径合成的 tRNA 修饰物。通过基因组比较分析发现了一些特定细菌,它们预测的 Q 修复途径与预测的两种修复蛋白的底物特异性之间存在差异:(1)独特的 tRNA 鸟嘌呤-34 转糖基化酶(细菌 TGT 或 bTGT),负责将前体碱基插入目标 tRNA;(2)奎奎索前体转运体(QPTR),这是一种转运蛋白,用于输入 Q 前体。像鸡沙雷氏巴顿氏菌这种只能在细胞内生存的病原体只拥有 bTGT 和 QPTR,但缺乏将 preQ1 转化为 Q 的预测酶,预计它们会抢救奎宁(q)碱基,这与必须在细胞内生存的病原体沙眼衣原体的情况如出一辙。然而,序列分析表明,它们的 bTGTs 的底物特异性残基与插入 preQ1 而不是 q 的酶的底物特异性残基相似。耐人寻味的是,对河内氏杆菌的 tRNA 修饰概况进行的 MS 分析发现了微量的 preQ1,而这是以前在自然环境中没有观察到的。互补分析表明,与大肠杆菌类似,鸡血藤球虫 bTGT 和 QPTR 不仅能利用 preQ1,而且在浓度较高时还能处理 q。实验和系统发生组学分析表明,鸡血藤球虫的 Q 通路可能代表了细胞内病原体的进化转变--从从头合成 Q 的祖先转变为优先抢救 Q 的状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. Biotin concentration affects anaplerotic reactions functioning in glutamic acid production in Corynebacterium glutamicum. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1