Using ligand regulation, metal replacement, and ligand doping strategies on Zr-FUM to improve methane separation from coalbed gas.

Chemosphere Pub Date : 2024-09-01 Epub Date: 2024-09-02 DOI:10.1016/j.chemosphere.2024.143253
Yixuan Yu, Yi Zhou, Kunpeng Liu, Baogang Zhao, Yufei Kang, Tianjun Sun
{"title":"Using ligand regulation, metal replacement, and ligand doping strategies on Zr-FUM to improve methane separation from coalbed gas.","authors":"Yixuan Yu, Yi Zhou, Kunpeng Liu, Baogang Zhao, Yufei Kang, Tianjun Sun","doi":"10.1016/j.chemosphere.2024.143253","DOIUrl":null,"url":null,"abstract":"<p><p>Developing adsorbents suitable for industrial applications that can effectively enhance the separation of methane (CH<sub>4</sub>) from nitrogen (N<sub>2</sub>) in coalbed gas is crucial to improve energy recovery and mitigate greenhouse gas emissions. In this study, three modification strategies were implemented on Zr-FUM, including ligand regulation, metal replacement, and ligand doping, to synthesize Zr-FDCA, Al-FUM, and Zr-FUM-FA, with the aim of improving the performance of CH<sub>4</sub>/N<sub>2</sub> separation under humid conditions. The results demonstrated that the promotion of robust orbital overlap and strengthened electrovalent bonding on adsorbents can selectively enhance CH<sub>4</sub> adsorption. As a result, Zr-FUM-FA achieved a saturated CH<sub>4</sub> adsorption capacity of 1.37 mmol/g, a CH<sub>4</sub> working window of 307 s, and a CH<sub>4</sub>/N<sub>2</sub> sorbent selection parameter (Ssp) of 47.31, exceeding the performance of most reported adsorbents. Analyses of the pore structure, surface morphology, and functional groups revealed that the presence of an ultramicropore proximity to CH<sub>4</sub>, reduced static resistance, and enhanced electrovalent bond were key factors for CH<sub>4</sub> separation. Grand Canonical Monte Carlo and Density Functional Theory studies indicated that the introduction of -C-H- in FA played a crucial role in enhancing CH<sub>4</sub> adsorption. Optimization of adsorption parameters using the Aspen adsorption package showed that in a dual-adsorbent bed system, the recovery and purity of CH<sub>4</sub> in Zr-FUM-FA reach 99.5% and 97.3%, respectively, providing important theoretical support for the improvement of CH<sub>4</sub> recovery in the pressure swing adsorption process from coalbed gas.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143253"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing adsorbents suitable for industrial applications that can effectively enhance the separation of methane (CH4) from nitrogen (N2) in coalbed gas is crucial to improve energy recovery and mitigate greenhouse gas emissions. In this study, three modification strategies were implemented on Zr-FUM, including ligand regulation, metal replacement, and ligand doping, to synthesize Zr-FDCA, Al-FUM, and Zr-FUM-FA, with the aim of improving the performance of CH4/N2 separation under humid conditions. The results demonstrated that the promotion of robust orbital overlap and strengthened electrovalent bonding on adsorbents can selectively enhance CH4 adsorption. As a result, Zr-FUM-FA achieved a saturated CH4 adsorption capacity of 1.37 mmol/g, a CH4 working window of 307 s, and a CH4/N2 sorbent selection parameter (Ssp) of 47.31, exceeding the performance of most reported adsorbents. Analyses of the pore structure, surface morphology, and functional groups revealed that the presence of an ultramicropore proximity to CH4, reduced static resistance, and enhanced electrovalent bond were key factors for CH4 separation. Grand Canonical Monte Carlo and Density Functional Theory studies indicated that the introduction of -C-H- in FA played a crucial role in enhancing CH4 adsorption. Optimization of adsorption parameters using the Aspen adsorption package showed that in a dual-adsorbent bed system, the recovery and purity of CH4 in Zr-FUM-FA reach 99.5% and 97.3%, respectively, providing important theoretical support for the improvement of CH4 recovery in the pressure swing adsorption process from coalbed gas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Zr-FUM 上使用配体调节、金属置换和配体掺杂策略来改进煤层气中的甲烷分离。
开发适合工业应用、能有效提高煤层气中甲烷(CH4)与氮气(N2)分离的吸附剂,对于提高能源回收率和减少温室气体排放至关重要。本研究对 Zr-FUM 实施了配体调节、金属置换和配体掺杂等三种改性策略,合成了 Zr-FDCA、Al-FUM 和 Zr-FUM-FA,旨在改善潮湿条件下 CH4/N2 的分离性能。结果表明,促进吸附剂上的稳健轨道重叠和加强电价键可以选择性地提高对 CH4 的吸附。因此,Zr-FUM-FA 的饱和 CH4 吸附容量为 1.37 mmol/g,CH4 工作窗口为 307 s,CH4/N2 吸附剂选择参数(Ssp)为 47.31,超过了大多数已报道吸附剂的性能。对孔隙结构、表面形态和官能团的分析表明,超微孔接近 CH4、静态电阻减小和电价键增强是分离 CH4 的关键因素。大卡农蒙特卡洛和密度泛函理论研究表明,FA 中引入 -C-H- 对增强 CH4 吸附起着关键作用。使用 Aspen 吸附软件包优化吸附参数的结果表明,在双吸附床系统中,Zr-FUM-FA 中 CH4 的回收率和纯度分别达到 99.5% 和 97.3%,为提高煤层气变压吸附过程中的 CH4 回收率提供了重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fertilizing properties of materials based on opoka and waste concrete after sorption of humic substances from raw reject water. Anxiety caused by chronic exposure to methylisothiazolinone in zebrafish: behavioral analysis, brain histology and gene responses. Corrigendum to Quantification of 68 elements in river water monitoring samples in single-run measurements [Chemosphere, 2023, 320, 138053]. Airborne microplastic pollution detected in the atmosphere of the South Shetland Islands in Antarctica. A critique of Rajendran et al.'s "A critical and recent developments on adsorption technique for removal of heavy metals from wastewater - A review".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1