Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging.

Gideon Sadikiel Mmbando
{"title":"Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging.","authors":"Gideon Sadikiel Mmbando","doi":"10.1080/09553002.2024.2398081","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings.</p><p><strong>Conclusion: </strong>By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1505-1516"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2398081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings.

Conclusion: By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外线-B(UV-B)诱导的 DNA 损伤修复机制在植物和人类中的变异:开发防止皮肤光老化的途径。
目的:我们周围环境中的紫外线-B(UV-B)含量不断增加,引发了对人类和植物可能受到的影响的担忧。由于紫外线-B 的独特性和并发性,紫外线-B 照射的增强对这两种陆地生命要素的有害影响是不同的。通过探索植物的生理和生化反应以及对人类健康的影响,了解紫外线-B 辐射的共同弱点和独特适应性具有重要意义。然而,关于紫外线-B 辐射对植物和动物影响的比较研究却很少。这篇综述通过植物学和医学观点之间复杂的相互作用,借鉴当前的研究成果,揭示了紫外线-B 辐射效应的复杂网络:本研究通过全面了解紫外线-B 辐射增强对植物和人类的复杂影响,总结了应对紫外线-B 辐射增强压力的相关适应策略,为提高人类细胞对环境压力的适应能力提供了新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
γ-Radiations induced phytoconstituents variability in the grains of cultivated buckwheat species of Himalayan region. IEPA, a novel radiation countermeasure, alleviates acute radiation syndrome in rodents. Isolation and characterization of gamma rays induced mutants for improved agro-morphological performance and harder grain texture in wheat (Triticum aestivum L.). Advantages of single high-dose radiation therapy compared with conventional fractionated radiation therapy in overcoming radioresistance. Technetium-99m radiolabeling of graphene quantum dots (GQDs) as a new probe for glioblastoma tumor imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1