Dynamics of axially moving spinning microbeams composed of tri-directional graded porous materials with axisymmetric cross-sections and piezoelectric layers in complex fields

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2024-08-28 DOI:10.1016/j.euromechsol.2024.105421
Yue Wang, Shuhong Wang
{"title":"Dynamics of axially moving spinning microbeams composed of tri-directional graded porous materials with axisymmetric cross-sections and piezoelectric layers in complex fields","authors":"Yue Wang,&nbsp;Shuhong Wang","doi":"10.1016/j.euromechsol.2024.105421","DOIUrl":null,"url":null,"abstract":"<div><p>The current article appraises the vibration and stability of tri-directional functionally graded porous microscale beams with rectangular cross-sections integrated with piezoelectric layers under spinning and axial movements in complex environments. The microbeam is surrounded by a three-parameter Winkler-Pasternak-Hetenyi medium, and its material characteristics are graded in thickness, width, and longitudinal spatial directions by considering non-uniform and uniform porosity models. Dynamic equations, vibration frequencies, and stability criteria of the system are determined with the aid of the Galerkin approach and Laplace transform. The Campbell diagram and stability maps are drawn. Frequency and stability analyses, as well as comparison and parametric analyses, are conducted. The impacts of piezoelectric voltage, magneto-hygro-thermal fields, axial and tangential distributed follower forces, substrate characteristics, scale parameter, aspect ratio, porosity factor, and material gradation on flutter and divergence instability boundaries are assessed in detail. It is deduced that instability regions are condensed, and the instability threshold is enhanced by fine-adjusting the porosity and material gradient. It is discovered that destructive environmental effects can be alleviated by regulating the piezoelectric voltage. In addition, compared with the case of a square cross-section, the divergence/flutter instability region of the microbeam with a rectangular cross-section is smaller/larger. The outcomes of the present research can be helpful in the design of next-generation bi-gyroscopic systems.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"108 ","pages":"Article 105421"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824002018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current article appraises the vibration and stability of tri-directional functionally graded porous microscale beams with rectangular cross-sections integrated with piezoelectric layers under spinning and axial movements in complex environments. The microbeam is surrounded by a three-parameter Winkler-Pasternak-Hetenyi medium, and its material characteristics are graded in thickness, width, and longitudinal spatial directions by considering non-uniform and uniform porosity models. Dynamic equations, vibration frequencies, and stability criteria of the system are determined with the aid of the Galerkin approach and Laplace transform. The Campbell diagram and stability maps are drawn. Frequency and stability analyses, as well as comparison and parametric analyses, are conducted. The impacts of piezoelectric voltage, magneto-hygro-thermal fields, axial and tangential distributed follower forces, substrate characteristics, scale parameter, aspect ratio, porosity factor, and material gradation on flutter and divergence instability boundaries are assessed in detail. It is deduced that instability regions are condensed, and the instability threshold is enhanced by fine-adjusting the porosity and material gradient. It is discovered that destructive environmental effects can be alleviated by regulating the piezoelectric voltage. In addition, compared with the case of a square cross-section, the divergence/flutter instability region of the microbeam with a rectangular cross-section is smaller/larger. The outcomes of the present research can be helpful in the design of next-generation bi-gyroscopic systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由具有轴对称横截面的三向分级多孔材料和压电层组成的轴向移动旋转微梁在复杂场中的动力学特性
本文评估了在复杂环境下,集成压电层的矩形截面三向功能分级多孔微梁在旋转和轴向运动时的振动和稳定性。微梁周围是三参数温克勒-帕斯捷尔纳克-赫特尼介质,通过考虑非均匀和均匀孔隙率模型,在厚度、宽度和纵向空间方向上对其材料特性进行了分级。借助 Galerkin 方法和拉普拉斯变换,确定了系统的动态方程、振动频率和稳定性标准。绘制了坎贝尔图和稳定性图。进行了频率和稳定性分析,以及比较和参数分析。详细评估了压电电压、磁-高-热场、轴向和切向分布式随动力、基体特性、比例参数、长宽比、孔隙率和材料级配对扑动和发散不稳定边界的影响。结果表明,通过微调孔隙率和材料梯度,不稳定区域被压缩,不稳定阈值提高。研究发现,通过调节压电电压可以减轻破坏性环境效应。此外,与正方形横截面的情况相比,矩形横截面微梁的发散/飘浮不稳定区域更小/更大。本研究的成果有助于下一代双陀螺系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
Atomistic investigation of interface adherence mechanism of structural indenter nanocoining single crystal aluminum Research on mechanical behavior of particle/matrix interface in composite solid propellant Vibration suppression of suspended cables with three-to-one internal resonances via time-delay feedback Determination of material constants of piezoceramics using genetic algorithm Vibration response of nanobeams subjected to random reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1