Robust data-driven predictive control for unknown linear time-invariant systems

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Systems & Control Letters Pub Date : 2024-09-04 DOI:10.1016/j.sysconle.2024.105914
{"title":"Robust data-driven predictive control for unknown linear time-invariant systems","authors":"","doi":"10.1016/j.sysconle.2024.105914","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input–state–output or input–output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound on a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input–state–output or input–output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound on a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未知线性时变系统的鲁棒数据驱动预测控制
本文根据状态是否可测,利用输入-状态-输出或输入-输出数据,为未知线性时变系统提出了一种新的鲁棒数据驱动预测控制方案。为了消除对预先收集的数据足够高阶的持续激励(PE)条件的需求,本文构建了一个包含所有能够生成此类数据的系统的集合。然后,在每个时间步长上,为集合中的所有系统推导出给定目标函数的上限,并设计一个反馈控制器来最小化该上限。通过求解一组线性矩阵不等式,可以确定每个时间步的最优控制增益。我们证明,如果合成问题在初始时间步是可行的,那么它在未来所有时间步都是可行的。与目前基于行为系统理论的数据驱动预测控制方案不同,我们的方法对预收集数据的要求不那么严格,因此更易于实施。我们提出的方法通过应用于一个未知且不稳定的批量反应器来证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
期刊最新文献
Robust control of time-delayed stochastic switched systems with dwell Data-driven control of nonlinear systems: An online sequential approach Optimal impulse control problems with time delays: An illustrative example Inverse reinforcement learning methods for linear differential games Min–max group consensus of discrete-time multi-agent systems under directed random networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1