{"title":"A comparative study of the efficacy of alginate lyases in the presence of metal ions elevated in the cystic fibrosis lung milieu","authors":"Neetu , T.N.C. Ramya","doi":"10.1016/j.bbrep.2024.101821","DOIUrl":null,"url":null,"abstract":"<div><p><em>Pseudomonas aeruginosa</em>, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc. The efficacy of alginate lyases under these conditions of elevated metal concentrations has not been categorically determined. Here, we have assessed the enzyme activity of two exolytic and five endolytic alginate lyases in the presence of metal ions (Fe<sup>2+</sup>, Zn<sup>2+</sup>, Mn<sup>2+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Ni<sup>2+</sup>, Cu<sup>2+</sup>) elevated in the cystic fibrosis lung milieu. Several of these alginate lyases exhibited increased activity in the presence of Ca<sup>2+</sup>, and the polysaccharide lyase family 7 members studied here exhibited decreased activity in the presence of Zn<sup>2+</sup>. The enzyme activity of the PL7 alginate lyases from <em>Cellulophaga algicola</em> (CaAly/CaFLDAly) and <em>Vibrio</em> sp. (VspAlyVI) was not affected in the presence of a mix of all the above-mentioned metal ions at the elevated concentrations found in the cystic fibrosis lung milieu. Specific alginate lyases might, therefore, retain the ability to degrade the alginate-containing <em>Pseudomonas</em> biofilm in the presence of metal ions elevated in the cystic fibrosis lung milieu.</p></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101821"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405580824001857/pdfft?md5=cb1e013e12072992449560db1623f653&pid=1-s2.0-S2405580824001857-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824001857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas aeruginosa, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc. The efficacy of alginate lyases under these conditions of elevated metal concentrations has not been categorically determined. Here, we have assessed the enzyme activity of two exolytic and five endolytic alginate lyases in the presence of metal ions (Fe2+, Zn2+, Mn2+, Mg2+, Ca2+, Ni2+, Cu2+) elevated in the cystic fibrosis lung milieu. Several of these alginate lyases exhibited increased activity in the presence of Ca2+, and the polysaccharide lyase family 7 members studied here exhibited decreased activity in the presence of Zn2+. The enzyme activity of the PL7 alginate lyases from Cellulophaga algicola (CaAly/CaFLDAly) and Vibrio sp. (VspAlyVI) was not affected in the presence of a mix of all the above-mentioned metal ions at the elevated concentrations found in the cystic fibrosis lung milieu. Specific alginate lyases might, therefore, retain the ability to degrade the alginate-containing Pseudomonas biofilm in the presence of metal ions elevated in the cystic fibrosis lung milieu.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.