Itô-vector projection filter for exponential families

IF 1.4 Q2 MATHEMATICS, APPLIED Results in Applied Mathematics Pub Date : 2024-08-01 DOI:10.1016/j.rinam.2024.100492
Muhammad Fuady Emzir
{"title":"Itô-vector projection filter for exponential families","authors":"Muhammad Fuady Emzir","doi":"10.1016/j.rinam.2024.100492","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the application of Itô-vector projection <span><span>[1]</span></span> to the optimal filtering problem. The algorithm projects one SDE to another, possibly lower dimensional, SDE by minimizing an Itô–Taylor expansion of the local projection error’s <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm. We explicitly derive the projection filter equation for a general class of parametric densities, and then specifically apply it to exponential families. We demonstrate that for the case where the measurement drift function is in the span of the natural statistics, the Itô-vector projection filter (IVPF) coincides with the Stratonovich-projection filter (SPF) <span><span>[2]</span></span>. We then compare the performance of the IVPF against the SPF (with both being implemented using the Gaussian bijection proposed in <span><span>[3]</span></span> and the sparse Gauss–Patterson numerical integration) for two-dimensional optimal filtering problem to show the effectiveness of the proposed algorithm. We vary the measurement drift function to four different functions that are not in the span of natural statistics. Based on one hundred Monte Carlo simulations for each measurement drift, we found that their performances are comparable, with the IVPF potentially offering a slightly more robust performance. However, in our current numerical implementation, the SPF consistently outperforms the IVPF in terms of speed.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100492"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000621/pdfft?md5=23e7e47144412c71556180da0f6cf1cd&pid=1-s2.0-S2590037424000621-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the application of Itô-vector projection [1] to the optimal filtering problem. The algorithm projects one SDE to another, possibly lower dimensional, SDE by minimizing an Itô–Taylor expansion of the local projection error’s L2 norm. We explicitly derive the projection filter equation for a general class of parametric densities, and then specifically apply it to exponential families. We demonstrate that for the case where the measurement drift function is in the span of the natural statistics, the Itô-vector projection filter (IVPF) coincides with the Stratonovich-projection filter (SPF) [2]. We then compare the performance of the IVPF against the SPF (with both being implemented using the Gaussian bijection proposed in [3] and the sparse Gauss–Patterson numerical integration) for two-dimensional optimal filtering problem to show the effectiveness of the proposed algorithm. We vary the measurement drift function to four different functions that are not in the span of natural statistics. Based on one hundred Monte Carlo simulations for each measurement drift, we found that their performances are comparable, with the IVPF potentially offering a slightly more robust performance. However, in our current numerical implementation, the SPF consistently outperforms the IVPF in terms of speed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
指数族的伊托向量投影滤波器
本文研究了伊托向量投影法 [1] 在最优滤波问题中的应用。该算法通过最小化局部投影误差的 L2 准则的 Itô-Taylor 展开,将一个 SDE 投影到另一个可能更低维的 SDE 上。我们明确推导出了一般参数密度的投影滤波方程,然后将其具体应用于指数族。我们证明,对于测量漂移函数在自然统计量跨度内的情况,伊托矢量投影滤波器(IVPF)与斯特拉托诺维奇投影滤波器(SPF)[2]不谋而合。然后,我们比较了 IVPF 和 SPF(两者都使用了 [3] 中提出的高斯偏投和稀疏高斯-帕特森数值积分)在二维最优滤波问题上的性能,以显示所提算法的有效性。我们将测量漂移函数变为四种不同的函数,这些函数不属于自然统计范围。根据对每种测量漂移进行的一百次蒙特卡罗模拟,我们发现它们的性能相当,IVPF 的性能可能稍强一些。不过,在我们目前的数值实现中,SPF 的速度始终优于 IVPF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
期刊最新文献
A numerical technique for a class of nonlinear fractional 2D Volterra integro-differential equations The numerical solution of a Fredholm integral equations of the second kind by the weighted optimal quadrature formula High-efficiency implicit scheme for solving first-order partial differential equations On the cross-variation of a class of stochastic processes Computing the coarseness measure of a bicolored point set over guillotine partitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1