Emerging role of liver-bone axis in osteoporosis

IF 5.9 1区 医学 Q1 ORTHOPEDICS Journal of Orthopaedic Translation Pub Date : 2024-09-01 DOI:10.1016/j.jot.2024.07.008
Hongliang Gao , Xing Peng , Ning Li , Liming Gou , Tao Xu , Yuqi Wang , Jian Qin , Hui Liang , Peiqi Ma , Shu Li , Jing Wu , Xihu Qin , Bin Xue
{"title":"Emerging role of liver-bone axis in osteoporosis","authors":"Hongliang Gao ,&nbsp;Xing Peng ,&nbsp;Ning Li ,&nbsp;Liming Gou ,&nbsp;Tao Xu ,&nbsp;Yuqi Wang ,&nbsp;Jian Qin ,&nbsp;Hui Liang ,&nbsp;Peiqi Ma ,&nbsp;Shu Li ,&nbsp;Jing Wu ,&nbsp;Xihu Qin ,&nbsp;Bin Xue","doi":"10.1016/j.jot.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Increasing attention to liver-bone crosstalk has spurred interest in targeted interventions for various forms of osteoporosis. Liver injury induced by different liver diseases can cause an imbalance in bone metabolism, indicating a novel regulatory paradigm between the liver and bone. However, the role of the liver-bone axis in both primary and secondary osteoporosis remains inadequately elucidated. Therefore, exploring the exact regulatory mechanisms of the liver-bone axis may offer innovative clinical approaches for treating diseases associated with the liver and bone.</p></div><div><h3>Methods</h3><p>Here, we summarize the latest research on the liver-bone axis by searching the PubMed and Web of Science databases and discuss the possible mechanism of the liver-bone axis in different types of osteoporosis. The literature directly reporting the regulatory role of the liver-bone axis in different types of osteoporosis from the PubMed and Web of Science databases has been included in the discussion of this review (including but not limited to the definition of the liver-bone axis, clinical studies, and basic research). In addition, articles discussing changes in bone metabolism caused by different etiologies of liver injury have also been included in the discussion of this review (including but not limited to clinical studies and basic research).</p></div><div><h3>Results</h3><p>Several endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, osteocalcin, OPN, LCAT, Fetuin-A, PGs, BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ABCB4, ALDH2, TFR2, SPTBN1, ZNF687 and SREBP2) might be involved in the regulation of the liver-bone axis. In addition to the classic metabolic pathways involved in inflammation and oxidative stress, iron metabolism, cholesterol metabolism, lipid metabolism and immunometabolism mediated by the liver-bone axis require more research to elucidate the regulatory mechanisms involved in osteoporosis.</p></div><div><h3>Conclusion</h3><p>During primary and secondary osteoporosis, the liver-bone axis is responsible for liver and bone homeostasis via several hepatokines and osteokines as well as biochemical signaling. Combining multiomics technology and data mining technology could further advance our understanding of the liver-bone axis, providing new clinical strategies for managing liver and bone-related diseases.</p><p><strong>The translational potential of this article</strong> is as follows: Abnormal metabolism in the liver could seriously affect the metabolic imbalance of bone. This review summarizes the indispensable role of several endocrine factors and biochemical signaling pathways involved in the liver-bone axis and emphasizes the important role of liver metabolic homeostasis in the pathogenesis of osteoporosis, which provides novel potential directions for the prevention, diagnosis, and treatment of liver and bone-related diseases.</p></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"48 ","pages":"Pages 217-231"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214031X24000767/pdfft?md5=81f2e7a9c2b6b979ad8cbbfc8d695bf8&pid=1-s2.0-S2214031X24000767-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X24000767","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Increasing attention to liver-bone crosstalk has spurred interest in targeted interventions for various forms of osteoporosis. Liver injury induced by different liver diseases can cause an imbalance in bone metabolism, indicating a novel regulatory paradigm between the liver and bone. However, the role of the liver-bone axis in both primary and secondary osteoporosis remains inadequately elucidated. Therefore, exploring the exact regulatory mechanisms of the liver-bone axis may offer innovative clinical approaches for treating diseases associated with the liver and bone.

Methods

Here, we summarize the latest research on the liver-bone axis by searching the PubMed and Web of Science databases and discuss the possible mechanism of the liver-bone axis in different types of osteoporosis. The literature directly reporting the regulatory role of the liver-bone axis in different types of osteoporosis from the PubMed and Web of Science databases has been included in the discussion of this review (including but not limited to the definition of the liver-bone axis, clinical studies, and basic research). In addition, articles discussing changes in bone metabolism caused by different etiologies of liver injury have also been included in the discussion of this review (including but not limited to clinical studies and basic research).

Results

Several endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, osteocalcin, OPN, LCAT, Fetuin-A, PGs, BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ABCB4, ALDH2, TFR2, SPTBN1, ZNF687 and SREBP2) might be involved in the regulation of the liver-bone axis. In addition to the classic metabolic pathways involved in inflammation and oxidative stress, iron metabolism, cholesterol metabolism, lipid metabolism and immunometabolism mediated by the liver-bone axis require more research to elucidate the regulatory mechanisms involved in osteoporosis.

Conclusion

During primary and secondary osteoporosis, the liver-bone axis is responsible for liver and bone homeostasis via several hepatokines and osteokines as well as biochemical signaling. Combining multiomics technology and data mining technology could further advance our understanding of the liver-bone axis, providing new clinical strategies for managing liver and bone-related diseases.

The translational potential of this article is as follows: Abnormal metabolism in the liver could seriously affect the metabolic imbalance of bone. This review summarizes the indispensable role of several endocrine factors and biochemical signaling pathways involved in the liver-bone axis and emphasizes the important role of liver metabolic homeostasis in the pathogenesis of osteoporosis, which provides novel potential directions for the prevention, diagnosis, and treatment of liver and bone-related diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肝-骨轴在骨质疏松症中的新作用
背景肝与骨之间的相互影响日益受到关注,这激发了人们对各种形式骨质疏松症进行有针对性干预的兴趣。不同肝病引起的肝损伤可导致骨代谢失衡,这表明肝与骨之间存在一种新的调节模式。然而,肝-骨轴在原发性和继发性骨质疏松症中的作用仍未得到充分阐明。因此,探索肝骨轴的确切调控机制可能为治疗肝脏和骨骼相关疾病提供创新的临床方法。方法在此,我们通过检索PubMed和Web of Science数据库,总结了有关肝骨轴的最新研究,并讨论了肝骨轴在不同类型骨质疏松症中的可能机制。PubMed和Web of Science数据库中直接报道肝骨轴在不同类型骨质疏松症中调控作用的文献已纳入本综述的讨论范围(包括但不限于肝骨轴的定义、临床研究和基础研究)。此外,本综述还收录了讨论不同肝损伤病因引起的骨代谢变化的文章(包括但不限于临床研究和基础研究)。结果一些内分泌因子(IGF-1、FGF21、肝素、维生素 D、骨钙素、OPN、LCAT、Fetuin-A、PGs、BMP2/9、IL-1/6/17 和 TNF-α)和关键基因(SIRT2、ABCB4、ALDH2、TFR2、SPTBN1、ZNF687 和 SREBP2)可能参与了肝-骨轴的调控。除了涉及炎症和氧化应激的经典代谢途径外,肝骨轴介导的铁代谢、胆固醇代谢、脂质代谢和免疫代谢也需要更多的研究,以阐明骨质疏松症的调控机制。结合多组学技术和数据挖掘技术,可以进一步推动我们对肝骨轴的理解,为治疗肝脏和骨骼相关疾病提供新的临床策略:肝脏代谢异常会严重影响骨骼的代谢失衡。这篇综述总结了肝-骨轴中涉及的几种内分泌因子和生化信号通路的不可或缺的作用,强调了肝脏代谢平衡在骨质疏松症发病机制中的重要作用,为肝脏和骨骼相关疾病的预防、诊断和治疗提供了新的潜在方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Orthopaedic Translation
Journal of Orthopaedic Translation Medicine-Orthopedics and Sports Medicine
CiteScore
11.80
自引率
13.60%
发文量
91
审稿时长
29 days
期刊介绍: The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.
期刊最新文献
Innovative development of robot reduction system in geriatric pelvic fractures: A single-center case series in Beijing, China Recent developments in Achilles tendon risk-analyzing rupture factors for enhanced injury prevention and clinical guidance: Current implications of regenerative medicine Zhuangyao Jianshen Wan ameliorates senile osteoporosis in SAMP6 mice through Modulation of the GCN5L1-mediated PI3K/Akt/wnt signaling pathway Sensory nerve EP4 facilitates heterotopic ossification by regulating angiogenesis-coupled bone formation Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone regeneration and immunomodulation in vitro and in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1