Combining deep neural network and spatio-temporal clustering to automatically assess rockburst and seismic hazard – Case study from Marcel coal mine in Upper Silesian Basin, Poland

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-08-30 DOI:10.1016/j.cageo.2024.105709
Adam Lurka
{"title":"Combining deep neural network and spatio-temporal clustering to automatically assess rockburst and seismic hazard – Case study from Marcel coal mine in Upper Silesian Basin, Poland","authors":"Adam Lurka","doi":"10.1016/j.cageo.2024.105709","DOIUrl":null,"url":null,"abstract":"<div><p>Mine induced seismic events are a major safety concern in mining and require careful monitoring and management to reduce their effects. Therefore, an essential step in assessing seismic and rock burst hazards is the analysis of mine seismicity. Recently, deep neural networks have been used to automatically determine seismic wave arrival times, surpassing human performance and allowing their use in seismic data analysis such as seismic event location and seismic energy calculation. In order to properly automate the rockburst and seismic hazard assessment deep neural network phase picker and a spatio-temporal clustering method were utilized. Seismic and rockburst hazards were statistically quantified using two-way contingency tables for two categorical variables: seismic energy level of mine tremors and number of clusters. Correlations between several spatio-temporal clusters and a statistical association between two categorical variables: seismic energy level and cluster number indicate an increase of seismic hazard in the Marcel hard coal mine in Poland. A new automated tool has been elaborated to automatically identify high-stress areas in mines in the form of spatio-temporal clusters.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"192 ","pages":"Article 105709"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001924/pdfft?md5=2bf4c7ce15a9d7979aa62ba8147334ed&pid=1-s2.0-S0098300424001924-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001924","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Mine induced seismic events are a major safety concern in mining and require careful monitoring and management to reduce their effects. Therefore, an essential step in assessing seismic and rock burst hazards is the analysis of mine seismicity. Recently, deep neural networks have been used to automatically determine seismic wave arrival times, surpassing human performance and allowing their use in seismic data analysis such as seismic event location and seismic energy calculation. In order to properly automate the rockburst and seismic hazard assessment deep neural network phase picker and a spatio-temporal clustering method were utilized. Seismic and rockburst hazards were statistically quantified using two-way contingency tables for two categorical variables: seismic energy level of mine tremors and number of clusters. Correlations between several spatio-temporal clusters and a statistical association between two categorical variables: seismic energy level and cluster number indicate an increase of seismic hazard in the Marcel hard coal mine in Poland. A new automated tool has been elaborated to automatically identify high-stress areas in mines in the form of spatio-temporal clusters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合深度神经网络和时空聚类自动评估岩爆和地震危害--波兰上西里西亚盆地马塞尔煤矿案例研究
矿井诱发的地震事件是采矿业的一个主要安全问题,需要认真监测和管理,以减少其影响。因此,评估地震和岩爆危险的一个重要步骤就是分析矿井地震。最近,深度神经网络被用于自动确定地震波到达时间,其性能超过了人类,可用于地震数据分析,如地震事件定位和地震能量计算。为了实现岩爆和地震危险评估的自动化,我们使用了深度神经网络相位选择器和时空聚类方法。使用双向或然率表对地震和岩爆危险进行了统计量化,其中包括两个分类变量:矿井震颤的地震能量水平和集群数量。几个时空聚类之间的相关性以及两个分类变量(地震能量水平和聚类数量)之间的统计关联表明,波兰马塞尔硬煤矿的地震危害在增加。我们开发了一种新的自动工具,以时空聚类的形式自动识别矿井中的高应力区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1