Elena Molina , David Kouřil , Tobias Isenberg , Barbora Kozlíková , Pere-Pau Vázquez
{"title":"Virtual reality inspection of chromatin 3D and 2D data","authors":"Elena Molina , David Kouřil , Tobias Isenberg , Barbora Kozlíková , Pere-Pau Vázquez","doi":"10.1016/j.cag.2024.104059","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the packing of long DNA strands into chromatin is one of the ultimate challenges in genomic research. An intrinsic part of this complex problem is studying the chromatin’s spatial structure. Biologists reconstruct 3D models of chromatin from experimental data, yet the exploration and analysis of such 3D structures is limited in existing genomic data visualization tools. To improve this situation, we investigated the current options of immersive methods and designed a prototypical VR visualization tool for 3D chromatin models that leverages virtual reality to deal with the spatial data. We showcase the tool in three primary use cases. First, we provide an overall 3D shape overview of the chromatin to facilitate the identification of regions of interest and the selection for further investigation. Second, we include the option to export the selected regions and elements in the BED format, which can be loaded into common analytical tools. Third, we integrate epigenetic modification data along the sequence that influence gene expression, either as in-world 2D charts or overlaid on the 3D structure itself. We developed our application in collaboration with two domain experts and gathered insights from two informal studies with five other experts.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104059"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097849324001948/pdfft?md5=f80ba96ee4f32f07bbbc948215d8362d&pid=1-s2.0-S0097849324001948-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the packing of long DNA strands into chromatin is one of the ultimate challenges in genomic research. An intrinsic part of this complex problem is studying the chromatin’s spatial structure. Biologists reconstruct 3D models of chromatin from experimental data, yet the exploration and analysis of such 3D structures is limited in existing genomic data visualization tools. To improve this situation, we investigated the current options of immersive methods and designed a prototypical VR visualization tool for 3D chromatin models that leverages virtual reality to deal with the spatial data. We showcase the tool in three primary use cases. First, we provide an overall 3D shape overview of the chromatin to facilitate the identification of regions of interest and the selection for further investigation. Second, we include the option to export the selected regions and elements in the BED format, which can be loaded into common analytical tools. Third, we integrate epigenetic modification data along the sequence that influence gene expression, either as in-world 2D charts or overlaid on the 3D structure itself. We developed our application in collaboration with two domain experts and gathered insights from two informal studies with five other experts.
了解长 DNA 链在染色质中的堆积是基因组研究的终极挑战之一。研究染色质的空间结构是这一复杂问题的内在组成部分。生物学家根据实验数据重建染色质的三维模型,但现有的基因组数据可视化工具对这种三维结构的探索和分析非常有限。为了改善这种状况,我们研究了当前的沉浸式方法选项,并设计了一种利用虚拟现实技术处理空间数据的三维染色质模型原型 VR 可视化工具。我们在三个主要用例中展示了该工具。首先,我们提供了染色质的整体三维形状概览,以便于识别感兴趣的区域和选择进一步的研究。其次,我们提供了以 BED 格式导出所选区域和元素的选项,可将其加载到常用分析工具中。第三,我们沿序列整合了影响基因表达的表观遗传修饰数据,这些数据可以是世界范围内的二维图表,也可以叠加在三维结构上。我们与两位领域专家合作开发了我们的应用程序,并从与其他五位专家的两次非正式研究中收集了见解。
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.