Na[Mn0.36Ni0.44Ti0.15Fe0.05]O2 predicted via machine learning for high energy Na-ion batteries†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-09-05 DOI:10.1039/D4TA04809A
Saaya Sekine, Tomooki Hosaka, Hayato Maejima, Ryoichi Tatara, Masanobu Nakayama and Shinichi Komaba
{"title":"Na[Mn0.36Ni0.44Ti0.15Fe0.05]O2 predicted via machine learning for high energy Na-ion batteries†","authors":"Saaya Sekine, Tomooki Hosaka, Hayato Maejima, Ryoichi Tatara, Masanobu Nakayama and Shinichi Komaba","doi":"10.1039/D4TA04809A","DOIUrl":null,"url":null,"abstract":"<p >We optimize the composition of transition metal layered oxides for high energy Na-ion batteries using machine learning (ML) trained by our experimental data. The ML models predict their electrochemical performance and suggest promising compositions of quaternary Na[Ni,Mn,Fe,Ti]O<small><sub>2</sub></small>. Accordingly, we synthesized Na[Mn<small><sub>0.36</sub></small>Ni<small><sub>0.44</sub></small>Ti<small><sub>0.15</sub></small>Fe<small><sub>0.05</sub></small>]O<small><sub>2</sub></small> which achieves a high energy density of 549 W h per kg of active material, agreeing with the predicted value.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 45","pages":" 31103-31107"},"PeriodicalIF":10.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ta/d4ta04809a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04809a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We optimize the composition of transition metal layered oxides for high energy Na-ion batteries using machine learning (ML) trained by our experimental data. The ML models predict their electrochemical performance and suggest promising compositions of quaternary Na[Ni,Mn,Fe,Ti]O2. Accordingly, we synthesized Na[Mn0.36Ni0.44Ti0.15Fe0.05]O2 which achieves a high energy density of 549 W h per kg of active material, agreeing with the predicted value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习预测 Na[Mn0.36Ni0.44Ti0.15Fe0.05]O2,用于高能量钠离子电池
我们利用由实验数据训练的机器学习(ML)优化了用于高能纳离子电池的过渡金属层状氧化物的组成。ML 模型预测了它们的电化学性能,并提出了很有前景的四元 Na[Ni,Mn,Fe,Ti]O2 成分。因此,我们合成了 Na[Mn0.36Ni0.44Ti0.15Fe0.05]O2,其能量密度高达 549 Wh kg-1,与预测值一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
From Waste to Energy and Fuel: Novel CuxNiy/CN catalysts from waste melamine resin for efficient nitrate reduction to ammonia Fluorinated catalysts for the oxygen evolution reaction: a comprehensive review of synthesis, structure, and performance Tuning of the Ionic Conductivity of Ba7Nb4MoO20 by Pressure: A Neutron Diffraction and Atomistic Modelling Study Calix[4]arene@MIL-101 as host@MOF for cage-in-cage pore space partitioning for enhanced CO2 separation and catalysis† Boosting charge migration kinetics using an Fe–S bridge for efficacious photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1