Manipulating Charge Distribution of Graphitic Carbon Nitride for Boosting NIR-II Light-Activated Reactive Oxygen Species Generation.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-16 Epub Date: 2024-09-05 DOI:10.1021/acsabm.4c01024
Mingming Shu, Kaidong Shen, Junjun Wang, Sen Wang, Xiaojiao Zhu, Chang Xu, Xianshun Sun, Sen Jin, Hongping Zhou
{"title":"Manipulating Charge Distribution of Graphitic Carbon Nitride for Boosting NIR-II Light-Activated Reactive Oxygen Species Generation.","authors":"Mingming Shu, Kaidong Shen, Junjun Wang, Sen Wang, Xiaojiao Zhu, Chang Xu, Xianshun Sun, Sen Jin, Hongping Zhou","doi":"10.1021/acsabm.4c01024","DOIUrl":null,"url":null,"abstract":"<p><p>Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6306-6312"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
操纵氮化石墨碳的电荷分布,促进近红外-II 光激活的活性氧生成。
结构工程对于提高多光子吸收(MPA)材料在近红外(NIR)光驱动的活性氧(ROS)生成中的载流子分离效率非常重要。本研究对 MPA 响应的钾/氰基官能化氮化石墨碳进行了研究,通过密度泛函理论计算和实验结果表明了电荷再分布和载流子分离效率的提高。在紫外-可见光或近红外-II 光照射下,钾/氰基官能化氮化石墨可产生各种类型的 ROS,缩小粒径后可实现高效的多光子光动力疗法。本研究开发了一种操纵电荷分布的简单策略,可在高效多光子光动力疗法中促进近红外光激活的 ROS 生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Decellularized Dermis ECM-Based Melanoma-on-a-Chip Model with Integrated Lymphatic and Vascular Networks for High-Throughput Drug Testing. Physically Cross-Linked Hydrogels Based on Poly(vinyl alcohol) and Gelatin for Independent Modulation of Mechanical Cues in Cell Adhesion Studies. Photobiomodulation Therapy with Zinc Oxide/Pheophorbide-a Nanoflakes Enhances Neurovascular Repair in Spinal Cord Injury Evidenced Using Photoacoustic Imaging. DNA-Templated Silver Nanoclusters Demonstrate Potent Antimicrobial Activity Against the Clinically Relevant Pathogens, Neisseria meningitidis and Streptococcus pneumoniae. Repurposing of Near-Infrared IR 808: A Promising Agent for the Treatment of Gram-Positive Bacteria Induced Endophthalmitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1