A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-05 DOI:10.1208/s12249-024-02922-7
Pedram Porbaha, Ramin Ansari, Mohammad Reza Kiafar, Rahman Bashiry, Mohammad Mehdi Khazaei, Amirhossein Dadbakhsh, Amir Azadi
{"title":"A Comparative Mathematical Analysis of Drug Release from Lipid-Based Nanoparticles","authors":"Pedram Porbaha,&nbsp;Ramin Ansari,&nbsp;Mohammad Reza Kiafar,&nbsp;Rahman Bashiry,&nbsp;Mohammad Mehdi Khazaei,&nbsp;Amirhossein Dadbakhsh,&nbsp;Amir Azadi","doi":"10.1208/s12249-024-02922-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R<sup>2</sup>), adjusted R<sup>2</sup>, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R<sup>2</sup> values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R<sup>2</sup> values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02922-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modeling of drug release from drug delivery systems is crucial for understanding and optimizing formulations. This research provides a comparative mathematical analysis of drug release from lipid-based nanoparticles. Drug release profiles from various types of lipid nanoparticles, including liposomes, nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), and nano/micro-emulsions (NEMs/MEMs), were extracted from the literature and used to assess the suitability of eight conventional mathematical release models. For each dataset, several metrics were calculated, including the coefficient of determination (R2), adjusted R2, the number of errors below certain thresholds (5%, 10%, 12%, and 20%), Akaike information criterion (AIC), regression sum square (RSS), regression mean square (RMS), residual sum of square (rSS), and residual mean square (rMS). The Korsmeyer-Peppas model ranked highest among the evaluated models, with the highest adjusted R2 values of 0.95 for NLCs and 0.93 for other liposomal drug delivery systems. The Weibull model ranked second, with adjusted R2 values of 0.92 for liposomal systems, 0.94 for SLNs, and 0.82 for NEMs/MEMs. Thus, these two models appear to be more effective in forecasting and characterizing the release of lipid nanoparticle drugs, potentially making them more suitable for upcoming research endeavors.

Graphical Abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质纳米颗粒药物释放的比较数学分析
药物从给药系统中释放的数学模型对于理解和优化配方至关重要。本研究对基于脂质的纳米颗粒的药物释放进行了比较数学分析。研究人员从文献中提取了各种类型脂质纳米颗粒的药物释放曲线,包括脂质体、纳米结构脂质载体(NLCs)、固体脂质纳米颗粒(SLNs)和纳米/微乳(NEMs/MEMs),并用这些曲线评估了八个传统释放数学模型的适用性。对每个数据集都计算了几个指标,包括判定系数 (R2)、调整后的 R2、低于特定阈值(5%、10%、12% 和 20%)的误差数、阿凯克信息准则 (AIC)、回归平方和 (RSS)、回归均方 (RMS)、残差平方和 (rSS) 和残差均方 (rMS)。在评估的模型中,Korsmeyer-Peppas 模型的调整 R2 值最高,NLC 为 0.95,其他脂质体给药系统为 0.93。Weibull 模型排名第二,脂质体系统的调整 R2 值为 0.92,SLN 为 0.94,NEMs/MEMs 为 0.82。因此,这两个模型在预测和表征脂质纳米粒子药物释放方面似乎更有效,可能更适合即将开展的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1