Heart failure with preserved ejection fraction in pigs causes shifts in posttranscriptional checkpoints.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2024-11-01 Epub Date: 2024-09-06 DOI:10.1152/ajpheart.00551.2023
Stephanie L Samani, Shayne C Barlow, Lisa A Freeburg, Grayson M Catherwood, Amelia M Churillo, Traci L Jones, Diego Altomare, Hao Ji, Michael Shtutman, Michael R Zile, Tarek Shazly, Francis G Spinale
{"title":"Heart failure with preserved ejection fraction in pigs causes shifts in posttranscriptional checkpoints.","authors":"Stephanie L Samani, Shayne C Barlow, Lisa A Freeburg, Grayson M Catherwood, Amelia M Churillo, Traci L Jones, Diego Altomare, Hao Ji, Michael Shtutman, Michael R Zile, Tarek Shazly, Francis G Spinale","doi":"10.1152/ajpheart.00551.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Left ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV <i>K</i><sub>c</sub>) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus will alter posttranscriptional regulation, specifically microRNAs (miRs). LVPO was induced in pigs (<i>n</i> = 9) by sequential ascending aortic cuff and age- and weight-matched pigs (<i>n</i> = 6) served as controls. LV function was measured by echocardiography and LV <i>K</i><sub>c</sub> by speckle tracking. LV myocardial miRs were quantified using an 84-miR array. Treadmill testing and natriuretic peptide-A (NPPA) mRNA levels in controls and LVPO were performed (<i>n</i> = 10, <i>n</i> = 9, respectively). LV samples from LVPO and controls (<i>n</i> = 6, respectively) were subjected to RNA sequencing. LV mass and <i>K</i><sub>c</sub> increased by over 40% with LVPO (<i>P</i> < 0.05). A total of 30 miRs shifted with LVPO of which 11 miRs correlated to LV <i>K</i><sub>c</sub> (<i>P</i> < 0.05) that mapped to functional domains relevant to <i>K</i><sub>c</sub> such as fibrosis and calcium handling. LVPO resulted in reduced exercise tolerance (oxygen saturation, respiratory effort) and NPPA mRNA levels increased by fourfold (<i>P</i> < 0.05). RNA analysis identified several genes that mapped to specific miRs that were altered with LVPO. In conclusion, a specific set of miRs are changed in a large animal model consistent with the HFpEF phenotype, were related to LV stiffness properties, and several miRs mapped to molecular pathways that may hold relevance in terms of prognosis and therapeutic targets.<b>NEW & NOTEWORTHY</b> Heart failure with preserved ejection fraction (HFpEF) is an ever-growing cause for the HF burden. HFpEF is particularly difficult to treat as the mechanisms responsible for this specific form of HF are poorly understood. Using a relevant large animal model, this study uncovered a unique molecular signature with the development of HFpEF that regulates specific biological pathways relevant to the progression of this ever-growing cause of HF.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H1272-H1285"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1152/ajpheart.00551.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Left ventricular pressure overload (LVPO) can lead to heart failure with a preserved ejection fraction (HFpEF) and LV chamber stiffness (LV Kc) is a hallmark. This project tested the hypothesis that the development of HFpEF due to an LVPO stimulus will alter posttranscriptional regulation, specifically microRNAs (miRs). LVPO was induced in pigs (n = 9) by sequential ascending aortic cuff and age- and weight-matched pigs (n = 6) served as controls. LV function was measured by echocardiography and LV Kc by speckle tracking. LV myocardial miRs were quantified using an 84-miR array. Treadmill testing and natriuretic peptide-A (NPPA) mRNA levels in controls and LVPO were performed (n = 10, n = 9, respectively). LV samples from LVPO and controls (n = 6, respectively) were subjected to RNA sequencing. LV mass and Kc increased by over 40% with LVPO (P < 0.05). A total of 30 miRs shifted with LVPO of which 11 miRs correlated to LV Kc (P < 0.05) that mapped to functional domains relevant to Kc such as fibrosis and calcium handling. LVPO resulted in reduced exercise tolerance (oxygen saturation, respiratory effort) and NPPA mRNA levels increased by fourfold (P < 0.05). RNA analysis identified several genes that mapped to specific miRs that were altered with LVPO. In conclusion, a specific set of miRs are changed in a large animal model consistent with the HFpEF phenotype, were related to LV stiffness properties, and several miRs mapped to molecular pathways that may hold relevance in terms of prognosis and therapeutic targets.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an ever-growing cause for the HF burden. HFpEF is particularly difficult to treat as the mechanisms responsible for this specific form of HF are poorly understood. Using a relevant large animal model, this study uncovered a unique molecular signature with the development of HFpEF that regulates specific biological pathways relevant to the progression of this ever-growing cause of HF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
保留射血分数的猪心力衰竭会导致转录后检查点发生变化。
背景:左心室压力超负荷(LVPO)可导致射血分数保留型心力衰竭(HFpEF),而左心室腔僵硬度(LV Kc)是其特征之一。本项目检验了一个假设,即 LVPO 刺激导致的射血分数保留型心力衰竭(HFpEF)的发生会改变转录后调控,特别是微RNA(miRs)。方法通过连续升主动脉袖带诱导猪(9 头)发生 LVPO,年龄和体重匹配的猪(6 头)作为对照组。超声心动图测量左心室功能,斑点追踪测量左心室Kc。使用 84 miR 阵列对左心室心肌 miRs 进行量化。对对照组和 LVPO 进行了跑步机测试和利钠肽-A(NPPA)mRNA 水平检测(分别为 10 人和 9 人)。对 LVPO 和对照组的左心室样本(分别为 n=6)进行 RNA 测序。结果LVPO 使左心室质量和 Kc 增加了 40% 以上(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
A zebrafish model to study RRAGD variants associated cardiomyopathy. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Impaired endothelial function contributes to cardiac dysfunction - role of mitochondrial dynamics. Predictive value of triglyceride-glucose index for the evaluation of coronary artery disease severity and occurrence of major adverse cardiovascular events. What frozen human hearts can tell us about treating heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1