The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2024-09-03 DOI:10.1016/j.antiviral.2024.105994
Thuc Nguyen Dan Do , Rana Abdelnabi , Bernadett Boda , Samuel Constant , Johan Neyts , Dirk Jochmans
{"title":"The triple combination of Remdesivir (GS-441524), Molnupiravir and Ribavirin is highly efficient in inhibiting coronavirus replication in human nasal airway epithelial cell cultures and in a hamster infection model","authors":"Thuc Nguyen Dan Do ,&nbsp;Rana Abdelnabi ,&nbsp;Bernadett Boda ,&nbsp;Samuel Constant ,&nbsp;Johan Neyts ,&nbsp;Dirk Jochmans","doi":"10.1016/j.antiviral.2024.105994","DOIUrl":null,"url":null,"abstract":"<div><p>The use of fixed dose-combinations of antivirals with different mechanisms of action has proven key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. This work explores the effect of a combination of 3 broad-spectrum antiviral nucleosides on the replication of coronaviruses. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (the parent nucleoside of remdesivir), molnupiravir and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters in a prophylactic setup. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy (but not in those that received the respective double combinations) no infectious virus was detectable. Our findings indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"231 ","pages":"Article 105994"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166354224002031/pdfft?md5=75eca4369d31dca76a301be203c81926&pid=1-s2.0-S0166354224002031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224002031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of fixed dose-combinations of antivirals with different mechanisms of action has proven key in the successful treatment of infections with HIV and HCV. For the treatment of infections with SARS-CoV-2 and possible future epi-/pandemic coronaviruses, it will be important to explore the efficacy of combinations of different drugs, in particular to avoid resistance development, such as in patients with immunodeficiencies. This work explores the effect of a combination of 3 broad-spectrum antiviral nucleosides on the replication of coronaviruses. To that end, we made use of primary human airway epithelial cell (HAEC) cultures grown at the air-liquid interface that were infected with the beta coronavirus OC43. We found that the triple combination of GS-441524 (the parent nucleoside of remdesivir), molnupiravir and ribavirin resulted in a more pronounced antiviral efficacy than what could be expected from a purely additive antiviral effect. The potency of this triple combination was next tested in SARS-CoV-2 infected hamsters in a prophylactic setup. To that end, for each of the drugs, intentionally suboptimal or even ineffective doses were selected. Yet, in the lungs of all hamsters that received triple prophylactic therapy (but not in those that received the respective double combinations) no infectious virus was detectable. Our findings indicate that co-administration of approved drugs for the treatment of coronavirus infections should be further explored but also against other families of viruses with epidemic and pandemic potential for which no effective antiviral treatment is available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雷米替韦(GS-441524)、莫诺吡拉韦和利巴韦林的三联疗法能高效抑制冠状病毒在人鼻气道上皮细胞培养物和仓鼠感染模型中的复制。
事实证明,使用具有不同作用机制的固定剂量组合抗病毒药物是成功治疗艾滋病毒和丙型肝炎病毒感染的关键。对于治疗 SARS-CoV-2 和未来可能出现的流行/大流行冠状病毒感染,探索不同药物组合的疗效将非常重要,特别是要避免耐药性的产生,例如免疫缺陷患者的耐药性。这项研究探讨了 3 种广谱抗病毒核苷类药物组合对冠状病毒复制的影响。为此,我们利用在气液界面生长的原代人气道上皮细胞(HAEC)培养物感染了β冠状病毒OC43。我们发现,GS-441524(雷米替韦的母体核苷)、molnupiravir 和利巴韦林的三重组合产生的抗病毒效果比纯粹的相加抗病毒效果更为显著。接下来,在预防性实验中,在感染了 SARS-CoV-2 的仓鼠身上测试了这种三联疗法的效力。为此,对每种药物都有意选择了次优甚至无效的剂量。然而,在所有接受三联预防治疗的仓鼠肺部(而不是接受相应双联预防治疗的仓鼠肺部)都检测不到传染性病毒。我们的研究结果表明,不仅应进一步探索联合使用已获批准的药物治疗冠状病毒感染的方法,而且还应探索联合使用其他具有流行和大流行潜力的病毒家族的方法,因为这些病毒目前还没有有效的抗病毒治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
Biological Characterization of AB-343, a Novel and Potent SARS-CoV-2 Mpro Inhibitor with Pan-Coronavirus Activity. Edible bird's nest: N- and O-glycan analysis and synergistic anti-avian influenza virus activity with neuraminidase inhibitors. X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates. Meeting Report of the 37th International Conference on Antiviral Research in Gold Coast, Australia, May 20-24, 2024, organized by the International Society for Antiviral Research. The anti-tumor efficacy of a recombinant oncolytic herpes simplex virus mediated CRISPR/Cas9 delivery targeting in HPV16-positive cervical cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1