Decomposition of brown algae in the ocean by microbiota: biological insights for recycling blue carbon.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-09-05 DOI:10.1093/bbb/zbae126
Natsuko Katsuhiro, Kanomi Sato, Ryuichi Takase, Shigeyuki Kawai, Kohei Ogura, Wataru Hashimoto
{"title":"Decomposition of brown algae in the ocean by microbiota: biological insights for recycling blue carbon.","authors":"Natsuko Katsuhiro, Kanomi Sato, Ryuichi Takase, Shigeyuki Kawai, Kohei Ogura, Wataru Hashimoto","doi":"10.1093/bbb/zbae126","DOIUrl":null,"url":null,"abstract":"<p><p>Brown algae are one of the most abundant biomasses on Earth. To recycle them as blue carbon sources, an effective decomposition system is necessary. This study focused on microorganisms present in seawater that decompose brown algae which contain laminarin and alginate. Where Undaria and Sargassum spp. were present, genera Psychromonas, Psychrobacter, and Pseudoalteromonas were predominant in seawater, while genera Arcobacter and Fusobacterium increased in abundance during the process of decomposition. The inoculation of Undaria samples into laminarin-minimal media led to a predominance of Pseudoalteromonas species. A Pseudoalteromonas isolate, identified as Pseudoalteromonas distincta, possesses genes encoding a putative laminarinase, polysaccharide lyase family 6 (PL6) alginate lyases, and a PL7 alginate lyase. The culture media of P. distincta contained no monosaccharides, suggesting the rapid conversion of polysaccharides to metabolites. These findings indicated that Pseudoalteromonas species play a major role in the decomposition of brown algae and affect the microbiota associated with them.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae126","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Brown algae are one of the most abundant biomasses on Earth. To recycle them as blue carbon sources, an effective decomposition system is necessary. This study focused on microorganisms present in seawater that decompose brown algae which contain laminarin and alginate. Where Undaria and Sargassum spp. were present, genera Psychromonas, Psychrobacter, and Pseudoalteromonas were predominant in seawater, while genera Arcobacter and Fusobacterium increased in abundance during the process of decomposition. The inoculation of Undaria samples into laminarin-minimal media led to a predominance of Pseudoalteromonas species. A Pseudoalteromonas isolate, identified as Pseudoalteromonas distincta, possesses genes encoding a putative laminarinase, polysaccharide lyase family 6 (PL6) alginate lyases, and a PL7 alginate lyase. The culture media of P. distincta contained no monosaccharides, suggesting the rapid conversion of polysaccharides to metabolites. These findings indicated that Pseudoalteromonas species play a major role in the decomposition of brown algae and affect the microbiota associated with them.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物群分解海洋中的褐藻:回收蓝碳的生物学启示。
褐藻是地球上最丰富的生物质之一。要将其作为蓝碳源回收利用,必须有一个有效的分解系统。这项研究的重点是海水中存在的能分解含有层藻素和海藻酸的褐藻的微生物。在存在裙带菜和马尾藻属的海水中,主要是精神单胞菌属(Psychromonas)、精神杆菌属(Psychrobacter)和假交单胞菌属(Pseudoalteromonas),而在分解过程中弧杆菌属(Arcobacter)和镰刀菌属(Fusobacterium)的数量有所增加。将裙带菜样本接种到层叠单胞菌素-极少培养基中会导致假单胞菌属占优势。分离出的一种假交替单胞菌被鉴定为Pseudoalteromonas distincta,它拥有编码一种推测的层粘蛋白酶、多糖裂解酶家族6(PL6)藻酸盐裂解酶和PL7藻酸盐裂解酶的基因。别名藻的培养基不含单糖,这表明多糖可快速转化为代谢物。这些研究结果表明,假交替单胞菌在褐藻的分解过程中发挥着重要作用,并影响着与之相关的微生物群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1