{"title":"Protective Effects of Curcumin against Nephrotoxicity in Male Rats after Chronic Exposure to Chlorpyrifos.","authors":"Tahereh Farkhondeh, Babak Roshanravan, Fariborz Samini, Saeed Samarghandian","doi":"10.2174/0113892010307571240817190846","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.</p><p><strong>Aim: </strong>This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.</p><p><strong>Method: </strong>Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.</p><p><strong>Result: </strong>A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats.</p><p><strong>Conclusion: </strong>Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010307571240817190846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.
Aim: This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.
Method: Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.
Result: A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats.
Conclusion: Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.