Sierra S Raglin, Alonso Favela, Daniel Laspisa, Jason G Wallace
{"title":"Manipulating the Maize (<i>Zea mays</i>) Microbiome.","authors":"Sierra S Raglin, Alonso Favela, Daniel Laspisa, Jason G Wallace","doi":"10.1101/pdb.prot108584","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i>) is a multifaceted cereal grass used globally for nutrition, animal feed, food processing, and biofuels, and a model system in genetics research. Studying the maize microbiome sometimes requires its manipulation to identify the contributions of specific taxa and ecological traits (i.e., diversity, richness, network structure) to maize growth and physiology. Due to regulatory constraints on applying engineered microorganisms in field settings, greenhouse-based experimentation is often the first step for understanding the contribution of root-associated microbiota-whether natural or engineered-to plant phenotypes. In this protocol, we describe methods to inoculate maize with a specific microbiome as a tool for understanding the microbiota's influence on its host plant. The protocol involves removal of the native seed microbiome followed by inoculation of new microorganisms; separate protocols are provided for inoculations from pure culture, from soil slurry, or by mixing in live soil. These protocols cover the most common methods for manipulating the maize microbiome in soil-grown plants in the greenhouse. The methods outlined will ultimately result in rhizosphere microbial assemblages with varying degrees of microbial diversity, ranging from low diversity (individual strain and synthetic community [SynCom] inoculation) to high diversity (percent live inoculation), with the slurry inoculation method representing an \"intermediate diversity\" treatment.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.prot108584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Maize (Zea mays) is a multifaceted cereal grass used globally for nutrition, animal feed, food processing, and biofuels, and a model system in genetics research. Studying the maize microbiome sometimes requires its manipulation to identify the contributions of specific taxa and ecological traits (i.e., diversity, richness, network structure) to maize growth and physiology. Due to regulatory constraints on applying engineered microorganisms in field settings, greenhouse-based experimentation is often the first step for understanding the contribution of root-associated microbiota-whether natural or engineered-to plant phenotypes. In this protocol, we describe methods to inoculate maize with a specific microbiome as a tool for understanding the microbiota's influence on its host plant. The protocol involves removal of the native seed microbiome followed by inoculation of new microorganisms; separate protocols are provided for inoculations from pure culture, from soil slurry, or by mixing in live soil. These protocols cover the most common methods for manipulating the maize microbiome in soil-grown plants in the greenhouse. The methods outlined will ultimately result in rhizosphere microbial assemblages with varying degrees of microbial diversity, ranging from low diversity (individual strain and synthetic community [SynCom] inoculation) to high diversity (percent live inoculation), with the slurry inoculation method representing an "intermediate diversity" treatment.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.