{"title":"Gap detection ability declines with central auditory neurodegeneration following age-related cochlear synaptopathy","authors":"Takaomi Kurioka, Kunio Mizutari","doi":"10.1111/ejn.16534","DOIUrl":null,"url":null,"abstract":"<p>Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"60 8","pages":"5861-5875"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.16534","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.