Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe3.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy Light, science & applications Pub Date : 2024-09-06 DOI:10.1038/s41377-024-01585-0
Sang Ho Suk, Sanghee Nah, Muhammad Sajjad, Sung Bok Seo, Jianxiang Chen, Sangwan Sim
{"title":"Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe<sub>3</sub>.","authors":"Sang Ho Suk, Sanghee Nah, Muhammad Sajjad, Sung Bok Seo, Jianxiang Chen, Sangwan Sim","doi":"10.1038/s41377-024-01585-0","DOIUrl":null,"url":null,"abstract":"<p><p>In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe<sub>3</sub> to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe<sub>3</sub> reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe<sub>3</sub> by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe<sub>3</sub>. It also effectively tunes the switching energy at a shift rate of ~93 meV %<sup>-1</sup>. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"240"},"PeriodicalIF":19.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01585-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe3 to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe3 reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe3 by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe3. It also effectively tunes the switching energy at a shift rate of ~93 meV %-1. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过准一维 ZrSe3 中的各向异性激子动力学实现亚皮秒、应变可调、偏振选择性光学开关。
在尖端光学技术中,偏振是编码和传输大量信息的关键,这凸显了选择性切换和调制偏振光的重要性。最近,各向异性的二维材料开始用于偏振多路光信号的超快切换,但面临着偏振比低和光谱范围有限的挑战。在此,我们将应变应用于准一维层状 ZrSe3,以增强偏振选择性并调整超快全光开关中的操作能量。最初,未应变 ZrSe3 上的瞬态吸收显示出沿特定晶轴偏振的亚皮秒级开关响应,这归因于各向异性激子的偏移恢复动力学。然而,其偏振选择性因垂直偏振的缓慢非激子响应而减弱。为了克服这一限制,我们通过弯曲 ZrSe3 柔性衬底来施加应变。压缩应变从光谱上解耦了激子和非激子成分,使亚皮秒开关的极化选择性提高了一倍,与拉伸应变的 ZrSe3 相比提高了两倍。它还能以约 93 meV %-1 的偏移速率有效调节开关能量。这种应变可调开关具有可重复性和可逆性,并能稳健地保持亚皮秒级运行。第一原理计算显示,应变控制是通过电子能带结构的动量和能带依赖性调制实现的,从而导致激子和非激子跃迁发生相反的转变。我们的发现为高性能、波长可调、偏振选择性超快光学开关提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
期刊最新文献
Research progress on aero-optical effects of hypersonic optical window with film cooling. Highly-efficient (>70%) and Wide-spectral (400-1700 nm) sub-micron-thick InGaAs photodiodes for future high-resolution image sensors. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1