Merging semi-crystallization and multispecies iodine intercalation at photo-redox interfaces for dual high-value synthesis.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-06 DOI:10.1038/s41467-024-52158-z
Fei Chen, Chang-Wei Bai, Pi-Jun Duan, Zhi-Quan Zhang, Yi-Jiao Sun, Xin-Jia Chen, Qi Yang, Han-Qing Yu
{"title":"Merging semi-crystallization and multispecies iodine intercalation at photo-redox interfaces for dual high-value synthesis.","authors":"Fei Chen, Chang-Wei Bai, Pi-Jun Duan, Zhi-Quan Zhang, Yi-Jiao Sun, Xin-Jia Chen, Qi Yang, Han-Qing Yu","doi":"10.1038/s41467-024-52158-z","DOIUrl":null,"url":null,"abstract":"<p><p>The artificial photocatalytic synthesis based on graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) for H<sub>2</sub>O<sub>2</sub> production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-C<sub>3</sub>N<sub>4</sub> integrated with the I<sup>-</sup>/I<sub>3</sub><sup>-</sup> redox shuttle mediators for efficient generation of H<sub>2</sub>O<sub>2</sub> and benzaldehyde. The system demonstrates a prominent catalytic efficiency, with a benzaldehyde yield of 0.78 mol g<sup>-1</sup> h<sup>-1</sup> and an H<sub>2</sub>O<sub>2</sub> yield of 62.52 mmol g<sup>-1</sup> h<sup>-1</sup>. Such a constructed system can achieve an impressive 96.25% catalytic selectivity for 2e<sup>-</sup> oxygen reduction, surpassing previously reported systems. The mechanism study reveals that the strong crystal electric field from iodized salt enhances photo-generated charge carrier separation. The I<sup>-</sup>/I<sub>3</sub><sup>-</sup> redox mediators significantly boost charge migration and continuous electron and proton supply for dual-channel catalytic synthesis. This groundbreaking work in photocatalytic co-production opens neoteric avenues for high-value synthesis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52158-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The artificial photocatalytic synthesis based on graphitic carbon nitride (g-C3N4) for H2O2 production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-C3N4 integrated with the I-/I3- redox shuttle mediators for efficient generation of H2O2 and benzaldehyde. The system demonstrates a prominent catalytic efficiency, with a benzaldehyde yield of 0.78 mol g-1 h-1 and an H2O2 yield of 62.52 mmol g-1 h-1. Such a constructed system can achieve an impressive 96.25% catalytic selectivity for 2e- oxygen reduction, surpassing previously reported systems. The mechanism study reveals that the strong crystal electric field from iodized salt enhances photo-generated charge carrier separation. The I-/I3- redox mediators significantly boost charge migration and continuous electron and proton supply for dual-channel catalytic synthesis. This groundbreaking work in photocatalytic co-production opens neoteric avenues for high-value synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在光-氧化还原界面上将半结晶和多物种碘插层结合起来,实现双重高价值合成。
基于氮化石墨碳(g-C3N4)生产 H2O2 的人工光催化合成技术发展迅速。然而,在电子和空穴位点同时生产高价值产物仍然是一个巨大的挑战。在这里,我们利用可转化的碘化钾获得了集成有 I-/I3- 氧化还原穿梭介质的半晶体 g-C3N4,用于高效生成 H2O2 和苯甲醛。该系统具有显著的催化效率,苯甲醛产量为 0.78 mol g-1 h-1,H2O2 产量为 62.52 mmol g-1 h-1。这种构建的系统对 2e- 氧还原的催化选择性达到了惊人的 96.25%,超过了之前报道的系统。机理研究表明,碘盐产生的强晶体电场增强了光生电荷载流子的分离。I-/I3- 氧化还原介质极大地促进了电荷迁移和电子与质子的持续供应,从而实现了双通道催化合成。这项光催化联合生产方面的开创性工作为高价值合成开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy Metamaterials with negative compressibility highlight evolving interpretations and opportunities Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas Developmental assembly of multi-component polymer systems through interconnected synthetic gene networks in vitro Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1