{"title":"Toward a more credible assessment of the credibility of science by many-analyst studies.","authors":"Katrin Auspurg, Josef Brüderl","doi":"10.1073/pnas.2404035121","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss a relatively new meta-scientific research design: many-analyst studies that attempt to assess the replicability and credibility of research based on large-scale observational data. In these studies, a large number of analysts try to answer the same research question using the same data. The key idea is the greater the variation in results, the greater the uncertainty in answering the research question and, accordingly, the lower the credibility of any individual research finding. Compared to individual replications, the large crowd of analysts allows for a more systematic investigation of uncertainty and its sources. However, many-analyst studies are also resource-intensive, and there are some doubts about their potential to provide credible assessments. We identify three issues that any many-analyst study must address: 1) identifying the source of variation in the results; 2) providing an incentive structure similar to that of standard research; and 3) conducting a proper meta-analysis of the results. We argue that some recent many-analyst studies have failed to address these issues satisfactorily and have therefore provided an overly pessimistic assessment of the credibility of science. We also provide some concrete guidance on how future many-analyst studies could provide a more constructive assessment.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2404035121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss a relatively new meta-scientific research design: many-analyst studies that attempt to assess the replicability and credibility of research based on large-scale observational data. In these studies, a large number of analysts try to answer the same research question using the same data. The key idea is the greater the variation in results, the greater the uncertainty in answering the research question and, accordingly, the lower the credibility of any individual research finding. Compared to individual replications, the large crowd of analysts allows for a more systematic investigation of uncertainty and its sources. However, many-analyst studies are also resource-intensive, and there are some doubts about their potential to provide credible assessments. We identify three issues that any many-analyst study must address: 1) identifying the source of variation in the results; 2) providing an incentive structure similar to that of standard research; and 3) conducting a proper meta-analysis of the results. We argue that some recent many-analyst studies have failed to address these issues satisfactorily and have therefore provided an overly pessimistic assessment of the credibility of science. We also provide some concrete guidance on how future many-analyst studies could provide a more constructive assessment.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.