Tracking Rare Single Donor and Recipient Immune and Leukemia Cells after Allogeneic Hematopoietic Cell Transplantation Using Mitochondrial DNA Mutations.
Livius Penter, Nicoletta Cieri, Katie Maurer, Marwan Kwok, Haoxiang Lyu, Wesley S Lu, Giacomo Oliveira, Satyen H Gohil, Ignaty Leshchiner, Caleb A Lareau, Leif S Ludwig, Donna S Neuberg, Haesook T Kim, Shuqiang Li, Lars Bullinger, Jerome Ritz, Gad Getz, Jacqueline S Garcia, Robert J Soiffer, Kenneth J Livak, Catherine J Wu
{"title":"Tracking Rare Single Donor and Recipient Immune and Leukemia Cells after Allogeneic Hematopoietic Cell Transplantation Using Mitochondrial DNA Mutations.","authors":"Livius Penter, Nicoletta Cieri, Katie Maurer, Marwan Kwok, Haoxiang Lyu, Wesley S Lu, Giacomo Oliveira, Satyen H Gohil, Ignaty Leshchiner, Caleb A Lareau, Leif S Ludwig, Donna S Neuberg, Haesook T Kim, Shuqiang Li, Lars Bullinger, Jerome Ritz, Gad Getz, Jacqueline S Garcia, Robert J Soiffer, Kenneth J Livak, Catherine J Wu","doi":"10.1158/2643-3230.BCD-23-0138","DOIUrl":null,"url":null,"abstract":"<p><p>Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key cellular populations associated with response following therapy, including after allogeneic hematopoietic stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations coevolve with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor these cellular populations. Furthermore, detection of mtDNA mutations via single-cell assay for transposase-accessible chromatin with select antigen profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells but also their phenotype at frequencies of 0.1% to 1%. Finally, integration of mtDNA mutations, surface markers, and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we envision future development of single-cell sequencing-based post-transplant monitoring as a powerful approach for guiding clinical decision-making. Significance: mtDNA mutations enable single-cell tracking of leukemic clonal evolution and donor-recipient origin following allogeneic HSCT. This provides unprecedented insight into chimeric cellular phenotypes of early immune reconstitution, incipient relapse, and quality of donor engraftment with immediate translational potential for future clinical post-transplant monitoring and decision-making.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-23-0138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key cellular populations associated with response following therapy, including after allogeneic hematopoietic stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations coevolve with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor these cellular populations. Furthermore, detection of mtDNA mutations via single-cell assay for transposase-accessible chromatin with select antigen profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells but also their phenotype at frequencies of 0.1% to 1%. Finally, integration of mtDNA mutations, surface markers, and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we envision future development of single-cell sequencing-based post-transplant monitoring as a powerful approach for guiding clinical decision-making. Significance: mtDNA mutations enable single-cell tracking of leukemic clonal evolution and donor-recipient origin following allogeneic HSCT. This provides unprecedented insight into chimeric cellular phenotypes of early immune reconstitution, incipient relapse, and quality of donor engraftment with immediate translational potential for future clinical post-transplant monitoring and decision-making.
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.