{"title":"Artemether ameliorates acetaminophen-induced liver injury through Nrf2 pathway","authors":"","doi":"10.1016/j.biopha.2024.117280","DOIUrl":null,"url":null,"abstract":"<div><p>Acetaminophen (APAP) overdose is a prevalent cause of clinical pharmacological liver injury worldwide. Artemether (ART), a first-line antimalarial drug, has demonstrated hepatoprotective activity. However, its effect on APAP-induced acute liver injury (AILI) remains unclear. In this study, we investigated whether ART can protect against AILI and examined its underlying mechanisms. In vivo, ART mitigated APAP-induced liver histological changes, including mitochondrial damage, hepatocyte necrosis, hepatocyte apoptosis, and inflammatory infiltration. Additionally, ART reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in APAP-induced mice. ART also activated the Nrf2-HO-1/GPX4 signaling pathway, exerting antioxidant effects in both <em>in vitro</em> and <em>in vivo</em> models of AILI. To confirm Nrf2 as a target of ART in vivo, we pretreated C57BL/6 mice with the Nrf2 inhibitor, ML385. The results indicated that inhibiting Nrf2 diminishes the protective effect of ART against AILI. Overall, our findings suggest that ART's protective effect against AILI is mediated through the Nrf2-related antioxidant pathway.</p></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0753332224011648/pdfft?md5=64d63e0721744d0268ed6175e19a9c94&pid=1-s2.0-S0753332224011648-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224011648","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acetaminophen (APAP) overdose is a prevalent cause of clinical pharmacological liver injury worldwide. Artemether (ART), a first-line antimalarial drug, has demonstrated hepatoprotective activity. However, its effect on APAP-induced acute liver injury (AILI) remains unclear. In this study, we investigated whether ART can protect against AILI and examined its underlying mechanisms. In vivo, ART mitigated APAP-induced liver histological changes, including mitochondrial damage, hepatocyte necrosis, hepatocyte apoptosis, and inflammatory infiltration. Additionally, ART reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in APAP-induced mice. ART also activated the Nrf2-HO-1/GPX4 signaling pathway, exerting antioxidant effects in both in vitro and in vivo models of AILI. To confirm Nrf2 as a target of ART in vivo, we pretreated C57BL/6 mice with the Nrf2 inhibitor, ML385. The results indicated that inhibiting Nrf2 diminishes the protective effect of ART against AILI. Overall, our findings suggest that ART's protective effect against AILI is mediated through the Nrf2-related antioxidant pathway.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.