Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-09-06 DOI:10.1038/s41746-024-01236-z
Cyril Brzenczek, Quentin Klopfenstein, Tom Hähnel, Holger Fröhlich, Enrico Glaab, On behalf of the NCER-PD Consortium
{"title":"Integrating digital gait data with metabolomics and clinical data to predict outcomes in Parkinson’s disease","authors":"Cyril Brzenczek, Quentin Klopfenstein, Tom Hähnel, Holger Fröhlich, Enrico Glaab, On behalf of the NCER-PD Consortium","doi":"10.1038/s41746-024-01236-z","DOIUrl":null,"url":null,"abstract":"Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-16"},"PeriodicalIF":12.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01236-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01236-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson’s disease (PD) presents diverse symptoms and comorbidities, complicating its diagnosis and management. The primary objective of this cross-sectional, monocentric study was to assess digital gait sensor data’s utility for monitoring and diagnosis of motor and gait impairment in PD. As a secondary objective, for the more challenging tasks of detecting comorbidities, non-motor outcomes, and disease progression subgroups, we evaluated for the first time the integration of digital markers with metabolomics and clinical data. Using shoe-attached digital sensors, we collected gait measurements from 162 patients and 129 controls in a single visit. Machine learning models showed significant diagnostic power, with AUC scores of 83–92% for PD vs. control and up to 75% for motor severity classification. Integrating gait data with metabolomics and clinical data improved predictions for challenging-to-detect comorbidities such as hallucinations. Overall, this approach using digital biomarkers and multimodal data integration can assist in objective disease monitoring, diagnosis, and comorbidity detection.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将数字步态数据与代谢组学和临床数据相结合,预测帕金森病的预后
帕金森病(Parkinson's disease,PD)的症状和并发症多种多样,使诊断和治疗变得更加复杂。这项横断面单中心研究的主要目的是评估数字步态传感器数据在监测和诊断帕金森病运动和步态损伤方面的实用性。作为次要目标,我们首次评估了数字标记物与代谢组学和临床数据的整合情况,以检测合并症、非运动结果和疾病进展亚组等更具挑战性的任务。我们使用鞋上安装的数字传感器,在一次就诊中收集了 162 名患者和 129 名对照组患者的步态测量数据。机器学习模型显示出显著的诊断能力,对帕金森病与对照组的AUC评分为83-92%,对运动严重程度分类的AUC评分高达75%。步态数据与代谢组学和临床数据的整合提高了对幻觉等难以检测的合并症的预测能力。总之,这种使用数字生物标记物和多模态数据整合的方法可以帮助进行客观的疾病监测、诊断和合并症检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Artificial Intelligence awarded two Nobel Prizes for innovations that will shape the future of medicine Spatial resolution enhancement using deep learning improves chest disease diagnosis based on thick slice CT Learning from the EHR to implement AI in healthcare A data-driven framework for identifying patient subgroups on which an AI/machine learning model may underperform Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1