Adaptive early initial degradation point detection and outlier correction for bearings

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers in Industry Pub Date : 2024-09-07 DOI:10.1016/j.compind.2024.104166
{"title":"Adaptive early initial degradation point detection and outlier correction for bearings","authors":"","doi":"10.1016/j.compind.2024.104166","DOIUrl":null,"url":null,"abstract":"<div><p>This paper delves into the accurate detection of the early initial degradation point (IDP) in bearings, and proposes, for the first time, a comprehensive adaptive IDP detection framework for bearings under variable operating conditions, along with an outlier data repair strategy. First, this study introduces the adaptive early initial degradation point detection (AEIDPD) method, which incorporates least-squares fitting to compute the slope and intercept of health indicators, and t-tests are used to construct the “sum-of-slopes” indicator. An adaptive IDP threshold construction method that adapts to variable operating conditions is proposed, establishing a strategy for IDP detection based on sum-of-slopes and adaptive thresholds. To enhance the robustness of AEIDPD in variable operating conditions, this paper introduces synchronized wavelet transform to obtain the \"synchronous pseudo-speed\" signal of bearing vibration, and constructs a condition interference elimination strategy based on velocity and sliding window averaging to mitigate the effects of variable operating conditions. Additionally, the study constructs upper and lower bounds for the root mean square feature of vibration signals using empirical parameters to correct outliers, providing more accurate data to support bearing life predictions. Experimental results demonstrate the effectiveness and robustness of the proposed methods.</p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361524000940","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into the accurate detection of the early initial degradation point (IDP) in bearings, and proposes, for the first time, a comprehensive adaptive IDP detection framework for bearings under variable operating conditions, along with an outlier data repair strategy. First, this study introduces the adaptive early initial degradation point detection (AEIDPD) method, which incorporates least-squares fitting to compute the slope and intercept of health indicators, and t-tests are used to construct the “sum-of-slopes” indicator. An adaptive IDP threshold construction method that adapts to variable operating conditions is proposed, establishing a strategy for IDP detection based on sum-of-slopes and adaptive thresholds. To enhance the robustness of AEIDPD in variable operating conditions, this paper introduces synchronized wavelet transform to obtain the "synchronous pseudo-speed" signal of bearing vibration, and constructs a condition interference elimination strategy based on velocity and sliding window averaging to mitigate the effects of variable operating conditions. Additionally, the study constructs upper and lower bounds for the root mean square feature of vibration signals using empirical parameters to correct outliers, providing more accurate data to support bearing life predictions. Experimental results demonstrate the effectiveness and robustness of the proposed methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴承自适应早期初始退化点检测和离群值校正
本文对轴承早期初始退化点(IDP)的精确检测进行了深入研究,并首次提出了针对不同运行条件下轴承的全面自适应 IDP 检测框架以及离群数据修复策略。首先,本研究介绍了自适应早期退化点检测(AEIDPD)方法,该方法采用最小二乘法拟合计算健康指标的斜率和截距,并利用 t 检验构建 "斜率之和 "指标。提出了一种适应多变运行条件的自适应 IDP 阈值构建方法,建立了一种基于斜率总和和自适应阈值的 IDP 检测策略。为了增强 AEIDPD 在多变工况下的鲁棒性,本文引入了同步小波变换来获取轴承振动的 "同步伪速度 "信号,并构建了基于速度和滑动窗口平均的工况干扰消除策略,以减轻多变工况的影响。此外,该研究还利用经验参数构建了振动信号均方根特征的上下限,以纠正异常值,为轴承寿命预测提供更准确的数据支持。实验结果证明了所提方法的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
期刊最新文献
Rapid quality control for recycled coarse aggregates (RCA) streams: Multi-sensor integration for advanced contaminant detection Apple varieties and growth prediction with time series classification based on deep learning to impact the harvesting decisions Maximum subspace transferability discriminant analysis: A new cross-domain similarity measure for wind-turbine fault transfer diagnosis Dual channel visible graph convolutional neural network for microleakage monitoring of pipeline weld homalographic cracks Video-based automatic people counting for public transport: On-bus versus off-bus deployment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1