Efficient analysis and evaluation method for overall lifting of large-span spatial grid structures

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of building engineering Pub Date : 2024-09-02 DOI:10.1016/j.jobe.2024.110657
Xiaonong Guo, Zhengang Sui, Zhengning Li, Jindong Zhang, Yujian Zhang, Shaohan Zong
{"title":"Efficient analysis and evaluation method for overall lifting of large-span spatial grid structures","authors":"Xiaonong Guo, Zhengang Sui, Zhengning Li, Jindong Zhang, Yujian Zhang, Shaohan Zong","doi":"10.1016/j.jobe.2024.110657","DOIUrl":null,"url":null,"abstract":"Large-span spatial grid structures are commonly employed on the roofs of various public buildings and are typically installed via an overall lifting method. However, the process of overall lifting cannot ensure complete synchronization, which may result in damage to the structure or the lifting equipment. It is imperative to ascertain the limit state of the structure under asynchronous conditions and to develop an accurate model for rapidly assessing the critical response during the lifting process. This paper introduces an efficient approach for evaluating and analyzing the overall lifting process of large-span spatial grid structures. The iterative limit boundary (ILB) method is proposed in this paper, which facilitates the rapid determination of the limit boundary and the limit state for a structure-equipment system with asynchronous lifting. Furthermore, the genetic algorithm is integrated into the ILB method to enhance its efficiency when dealing with numerous lifting points. An agent model capable of outputting key structural responses is developed for the rapid evaluation of those responses throughout the lifting process. Both a numerical example and an engineering example are provided to validate the proposed method. The computational results indicate that the method proposed achieves accurate results with a computational cost merely 3 % of that of the Monte Carlo simulation. Additionally, the agent model established within the limit boundary, operates at a speed 200 times faster than finite element analysis, thereby enabling precise and real-time critical response assessments.","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jobe.2024.110657","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Large-span spatial grid structures are commonly employed on the roofs of various public buildings and are typically installed via an overall lifting method. However, the process of overall lifting cannot ensure complete synchronization, which may result in damage to the structure or the lifting equipment. It is imperative to ascertain the limit state of the structure under asynchronous conditions and to develop an accurate model for rapidly assessing the critical response during the lifting process. This paper introduces an efficient approach for evaluating and analyzing the overall lifting process of large-span spatial grid structures. The iterative limit boundary (ILB) method is proposed in this paper, which facilitates the rapid determination of the limit boundary and the limit state for a structure-equipment system with asynchronous lifting. Furthermore, the genetic algorithm is integrated into the ILB method to enhance its efficiency when dealing with numerous lifting points. An agent model capable of outputting key structural responses is developed for the rapid evaluation of those responses throughout the lifting process. Both a numerical example and an engineering example are provided to validate the proposed method. The computational results indicate that the method proposed achieves accurate results with a computational cost merely 3 % of that of the Monte Carlo simulation. Additionally, the agent model established within the limit boundary, operates at a speed 200 times faster than finite element analysis, thereby enabling precise and real-time critical response assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大跨度空间网格结构整体吊装的高效分析和评估方法
大跨度空间网格结构通常用于各种公共建筑的屋顶,通常采用整体吊装法进行安装。然而,整体吊装过程无法确保完全同步,可能会导致结构或吊装设备损坏。当务之急是确定结构在非同步条件下的极限状态,并开发一个精确的模型来快速评估吊装过程中的临界响应。本文介绍了一种评估和分析大跨度空间网格结构整体吊装过程的有效方法。本文提出了迭代极限边界(ILB)方法,有助于快速确定异步吊装结构-设备系统的极限边界和极限状态。此外,遗传算法被集成到 ILB 方法中,以提高其在处理众多吊点时的效率。还开发了一个能够输出关键结构响应的代理模型,以便在整个吊装过程中快速评估这些响应。我们提供了一个数值示例和一个工程示例来验证所提出的方法。计算结果表明,所提出的方法可以获得精确的结果,而计算成本仅为蒙特卡罗模拟的 3%。此外,在极限边界内建立的代理模型的运行速度比有限元分析快 200 倍,从而实现了精确和实时的关键响应评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
期刊最新文献
Mechanical properties and chloride resistance of ultra-high-performance seawater sea-sand concrete with limestone and calcined clay cement (UHPSSC-LC3) under various curing conditions Radon emission characteristics and pore structure evolution of self-compacting concrete with silica fume-molybdenum tailings under different curing environments Editorial Board A rapid immersion measurement for the diffusion constant of chloride ions in the geopolymer concrete Coupled building simulation and CFD for real-time window and HVAC control in sports space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1