Jonas von der Heyden;Nils Schlüter;Philipp Binfet;Martin Asman;Markus Zdrallek;Tibor Jager;Moritz Schulze Darup
{"title":"Privacy-Preserving Power Flow Analysis via Secure Multi-Party Computation","authors":"Jonas von der Heyden;Nils Schlüter;Philipp Binfet;Martin Asman;Markus Zdrallek;Tibor Jager;Moritz Schulze Darup","doi":"10.1109/TSG.2024.3453491","DOIUrl":null,"url":null,"abstract":"Smart grids feature a bidirectional flow of electricity and data, enhancing flexibility, efficiency, and reliability in increasingly volatile energy grids. However, data from smart meters can reveal sensitive private information. Consequently, the adoption of smart meters is often restricted via legal means and hampered by limited user acceptance. Since metering data is beneficial for fault-free grid operation, power management, and resource allocation, applying privacy-preserving techniques to smart metering data is an important research problem. This work addresses this by using secure multi-party computation (SMPC), allowing multiple parties to jointly evaluate functions of their private inputs without revealing the latter. Concretely, we show how to perform power flow analysis on cryptographically hidden prosumer data. More precisely, we present a tailored solution to the power flow problem building on an SMPC implementation of Newton’s method. We analyze the security of our approach in the universal composability framework and provide benchmarks for various grid types, threat models, and solvers. Our results indicate that secure multi-party computation can be able to alleviate privacy issues in smart grids in certain applications.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 1","pages":"344-355"},"PeriodicalIF":9.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10667665/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Smart grids feature a bidirectional flow of electricity and data, enhancing flexibility, efficiency, and reliability in increasingly volatile energy grids. However, data from smart meters can reveal sensitive private information. Consequently, the adoption of smart meters is often restricted via legal means and hampered by limited user acceptance. Since metering data is beneficial for fault-free grid operation, power management, and resource allocation, applying privacy-preserving techniques to smart metering data is an important research problem. This work addresses this by using secure multi-party computation (SMPC), allowing multiple parties to jointly evaluate functions of their private inputs without revealing the latter. Concretely, we show how to perform power flow analysis on cryptographically hidden prosumer data. More precisely, we present a tailored solution to the power flow problem building on an SMPC implementation of Newton’s method. We analyze the security of our approach in the universal composability framework and provide benchmarks for various grid types, threat models, and solvers. Our results indicate that secure multi-party computation can be able to alleviate privacy issues in smart grids in certain applications.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.