Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-08-30 DOI:10.1016/j.ejmech.2024.116812
{"title":"Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation","authors":"","doi":"10.1016/j.ejmech.2024.116812","DOIUrl":null,"url":null,"abstract":"<div><p>Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.7 million compounds for in vitro and in vivo tests. Firstly, the kinase inhibitory activity tests of compounds based on ADP-Glo assay identified three most potent compounds LY2023-19, LY2023-24 and LY2023-25 with IC<sub>50</sub> of 556.4 nM, 218.1 nM and 22.4 nM for LRRK2 G2019S mutant, respectively. The further cellular experiments also indicated that three hit compounds significantly inhibited Ser935 phosphorylation of both wide-type and G2019S LRRK2 with IC<sub>50</sub> ranging from 27 nM to 1674 nM in HEK293T cells. The MD simulations of three compounds and G2019S LRRK2 showed the hydrogen bond formed by Glu1948 and Ala1950 is crucial for the binding of LRRK2. Afterwards, 6-OHDA-induced PD zebrafish model was constructed to evaluate the neuroprotective effects of hit compounds. The locomotion of the 6-OHDA treated zebrafish larvae was improved after treatment with LY2023-24. The obtained results can provide valuable guidance for the development of PD drugs by targeting LRRK2.</p></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424006937","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.7 million compounds for in vitro and in vivo tests. Firstly, the kinase inhibitory activity tests of compounds based on ADP-Glo assay identified three most potent compounds LY2023-19, LY2023-24 and LY2023-25 with IC50 of 556.4 nM, 218.1 nM and 22.4 nM for LRRK2 G2019S mutant, respectively. The further cellular experiments also indicated that three hit compounds significantly inhibited Ser935 phosphorylation of both wide-type and G2019S LRRK2 with IC50 ranging from 27 nM to 1674 nM in HEK293T cells. The MD simulations of three compounds and G2019S LRRK2 showed the hydrogen bond formed by Glu1948 and Ala1950 is crucial for the binding of LRRK2. Afterwards, 6-OHDA-induced PD zebrafish model was constructed to evaluate the neuroprotective effects of hit compounds. The locomotion of the 6-OHDA treated zebrafish larvae was improved after treatment with LY2023-24. The obtained results can provide valuable guidance for the development of PD drugs by targeting LRRK2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过组合虚拟筛选策略和生物活性评估发现强效 LRRK2 抑制剂。
据报道,富亮氨酸重复激酶2(LRRK2)与家族性和特发性帕金森病(PD)风险有关,是一种很有希望的帕金森病药物靶点。为了发现新型有效的 LRRK2 抑制剂,我们提出并应用了一种结合指纹相似性、基于复合物的药效谱和基于结构的分子对接的组合虚拟筛选策略。利用这一策略,我们最终从170万个化合物中筛选出25个化合物进行体外和体内试验。首先,基于ADP-Glo实验对化合物进行激酶抑制活性测试,发现了三个最有效的化合物LY2023-19、LY2023-24和LY2023-25,它们对LRRK2 G2019S突变体的IC50分别为556.4 nM、218.1 nM和22.4 nM。进一步的细胞实验也表明,在 HEK293T 细胞中,三种化合物都能显著抑制宽型和 G2019S LRRK2 的 Ser935 磷酸化,IC50 从 27 nM 到 1674 nM 不等。三种化合物与 G2019S LRRK2 的 MD 模拟显示,Glu1948 和 Ala1950 形成的氢键对 LRRK2 的结合至关重要。随后,研究人员构建了6-OHDA诱导的帕金森病斑马鱼模型,以评估化合物的神经保护作用。经LY2023-24治疗后,6-OHDA诱导的斑马鱼幼体的运动能力得到改善。这些结果可为开发以LRRK2为靶点的帕金森病药物提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
Discovery of Novel Fused-heterocycle-bearing Diarypyrimidine Derivatives as HIV-1 Potent NNRTIs Targeting Tolerant Region I for Enhanced Antiviral Activity and Resistance Profile Discovery of 4-(4-(3-(1-(2-(piperidin-1-yl)ethyl)-1H-benzo[d]imidazol-2-yl)isoxazol-5-yl)phenyl)morpholine as a novel c-Myc inhibitor against lung cancer in vitro and in vivo Discovery of Novel Phenyl Urea SHP2 Inhibitors with Anti-Colon Cancer and Potential Immunomodulatory Effects Design and Synthesis of Glycofullerene Derivatives as Novel Photosensitizer for Potential Application in PDT to Treat Cancer Discovery of New Fungal Jumonji H3K27 Demethylase Inhibitors for the Treatment of Cryptococcus neoformans and Candida auris Infections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1