unmconf : an R package for Bayesian regression with unmeasured confounders.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2024-09-07 DOI:10.1186/s12874-024-02322-2
Ryan Hebdon, James Stamey, David Kahle, Xiang Zhang
{"title":"unmconf : an R package for Bayesian regression with unmeasured confounders.","authors":"Ryan Hebdon, James Stamey, David Kahle, Xiang Zhang","doi":"10.1186/s12874-024-02322-2","DOIUrl":null,"url":null,"abstract":"<p><p>The inability to correctly account for unmeasured confounding can lead to bias in parameter estimates, invalid uncertainty assessments, and erroneous conclusions. Sensitivity analysis is an approach to investigate the impact of unmeasured confounding in observational studies. However, the adoption of this approach has been slow given the lack of accessible software. An extensive review of available R packages to account for unmeasured confounding list deterministic sensitivity analysis methods, but no R packages were listed for probabilistic sensitivity analysis. The R package unmconf implements the first available package for probabilistic sensitivity analysis through a Bayesian unmeasured confounding model. The package allows for normal, binary, Poisson, or gamma responses, accounting for one or two unmeasured confounders from the normal or binomial distribution. The goal of unmconf is to implement a user friendly package that performs Bayesian modeling in the presence of unmeasured confounders, with simple commands on the front end while performing more intensive computation on the back end. We investigate the applicability of this package through novel simulation studies. The results indicate that credible intervals will have near nominal coverage probability and smaller bias when modeling the unmeasured confounder(s) for varying levels of internal/external validation data across various combinations of response-unmeasured confounder distributional families.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02322-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The inability to correctly account for unmeasured confounding can lead to bias in parameter estimates, invalid uncertainty assessments, and erroneous conclusions. Sensitivity analysis is an approach to investigate the impact of unmeasured confounding in observational studies. However, the adoption of this approach has been slow given the lack of accessible software. An extensive review of available R packages to account for unmeasured confounding list deterministic sensitivity analysis methods, but no R packages were listed for probabilistic sensitivity analysis. The R package unmconf implements the first available package for probabilistic sensitivity analysis through a Bayesian unmeasured confounding model. The package allows for normal, binary, Poisson, or gamma responses, accounting for one or two unmeasured confounders from the normal or binomial distribution. The goal of unmconf is to implement a user friendly package that performs Bayesian modeling in the presence of unmeasured confounders, with simple commands on the front end while performing more intensive computation on the back end. We investigate the applicability of this package through novel simulation studies. The results indicate that credible intervals will have near nominal coverage probability and smaller bias when modeling the unmeasured confounder(s) for varying levels of internal/external validation data across various combinations of response-unmeasured confounder distributional families.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
unmconf : 用于未测量混杂因素的贝叶斯回归的 R 软件包。
无法正确考虑未测量混杂因素会导致参数估计偏差、不确定性评估无效以及结论错误。敏感性分析是调查观察性研究中未测量混杂因素影响的一种方法。然而,由于缺乏可用的软件,这种方法的应用一直进展缓慢。在对用于考虑未测量混杂因素的可用 R 软件包进行的广泛审查中,列出了确定性灵敏度分析方法,但没有列出用于概率灵敏度分析的 R 软件包。R 软件包 unmconf 通过贝叶斯未测量混杂模型实现了第一个可用的概率敏感性分析软件包。该软件包可用于正态、二元、泊松或伽马反应,从正态分布或二项分布中考虑一个或两个未测量混杂因素。unmconf 的目标是实现一个用户友好型软件包,在存在未测量混杂因素的情况下执行贝叶斯建模,在前端使用简单的命令,而在后端执行更密集的计算。我们通过新颖的模拟研究调查了该软件包的适用性。结果表明,在不同的响应-未测量混杂因素分布族组合中,针对不同水平的内部/外部验证数据建立未测量混杂因素模型时,可信区间将具有接近标称的覆盖概率和较小的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Challenges in measurement of adolescent mental health: how are gender patterns affected when level of symptoms is analysed simultaneously with impairment? Motivations for enrollment in a COVID-19 ring-based post-exposure prophylaxis trial: qualitative examination of participant experiences. Concordance between humans and GPT-4 in appraising the methodological quality of case reports and case series using the Murad tool. Bayesian additive regression trees for predicting childhood asthma in the CHILD cohort study. Incorporating external controls in the design of randomized clinical trials: a case study in solid tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1