{"title":"Cathepsin C exacerbates EAE by promoting the expansion of Tfh cells and the formation of TLSs in the CNS","authors":"","doi":"10.1016/j.bbi.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) mediated by CD4<sup>+</sup> T helper (Th) cells, and characterized by immune cell infiltration, demyelination and neurodegeneration, with no definitive cure available. Thus, it is pivotal and imperative to acquire more profound comprehension of the underlying mechanisms implicated in MS. Dysregulated immune responses are widely believed to play a primary role in the pathogenesis of MS. Recently, a plethora of studies have demonstrated the involvement of T follicular helper (Tfh) cells and tertiary lymphoid-like structures (TLSs) in the pathogenesis and progression of MS. Cathepsin C (CatC) is a cysteine exopeptidase which is crucial for the activation of immune-cell-associated serine proteinases in many inflammatory diseases in peripheral system, such as rheumatoid arthritis and septicemia. We have previously demonstrated that CatC is involved in neuroinflammation and exacerbates demyelination in both cuprizone-induced and experimental autoimmune encephalomyelitis (EAE) mouse models. However, the underlying immunopathological mechanism remains elusive. In the present study, we established a recombinant myelin oligodendrocyte glycoprotein 35–55 peptide-induced EAE model using conditional CatC overexpression mice to investigate the effects of CatC on the alteration of CD4<sup>+</sup> Th subsets, including Th1, Th2, Th17, Tfh and T regulatory cells. Our findings demonstrated that CatC particularly enhanced the population of Tfh cell in the brain, resulting in the earlier onset and more severe chronic syndrome of EAE. Furthermore, CatC promoted the formation of TLSs in the brain, leading to persistent neuroinflammation and exacerbating the severity of EAE in the chronic phase. Conversely, treatment with AZD7986, a specific inhibitor of CatC, effectively attenuated the syndrome of EAE and its effects caused by CatC both <em>in vivo</em> and <em>in vitro</em>. These findings provide a novel insight into the critical role of CatC in innate and adaptive immunity in EAE, and specific inhibitor of CatC, AZD7986, may contribute to potential therapeutic strategies for MS.</p></div>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":null,"pages":null},"PeriodicalIF":8.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889159124005968","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) mediated by CD4+ T helper (Th) cells, and characterized by immune cell infiltration, demyelination and neurodegeneration, with no definitive cure available. Thus, it is pivotal and imperative to acquire more profound comprehension of the underlying mechanisms implicated in MS. Dysregulated immune responses are widely believed to play a primary role in the pathogenesis of MS. Recently, a plethora of studies have demonstrated the involvement of T follicular helper (Tfh) cells and tertiary lymphoid-like structures (TLSs) in the pathogenesis and progression of MS. Cathepsin C (CatC) is a cysteine exopeptidase which is crucial for the activation of immune-cell-associated serine proteinases in many inflammatory diseases in peripheral system, such as rheumatoid arthritis and septicemia. We have previously demonstrated that CatC is involved in neuroinflammation and exacerbates demyelination in both cuprizone-induced and experimental autoimmune encephalomyelitis (EAE) mouse models. However, the underlying immunopathological mechanism remains elusive. In the present study, we established a recombinant myelin oligodendrocyte glycoprotein 35–55 peptide-induced EAE model using conditional CatC overexpression mice to investigate the effects of CatC on the alteration of CD4+ Th subsets, including Th1, Th2, Th17, Tfh and T regulatory cells. Our findings demonstrated that CatC particularly enhanced the population of Tfh cell in the brain, resulting in the earlier onset and more severe chronic syndrome of EAE. Furthermore, CatC promoted the formation of TLSs in the brain, leading to persistent neuroinflammation and exacerbating the severity of EAE in the chronic phase. Conversely, treatment with AZD7986, a specific inhibitor of CatC, effectively attenuated the syndrome of EAE and its effects caused by CatC both in vivo and in vitro. These findings provide a novel insight into the critical role of CatC in innate and adaptive immunity in EAE, and specific inhibitor of CatC, AZD7986, may contribute to potential therapeutic strategies for MS.
期刊介绍:
Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals.
As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.