{"title":"Integrative analysis revealed novel putative therapeutic targets of ulcerative colitis: Role of creatine","authors":"","doi":"10.1016/j.intimp.2024.113054","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Ulcerative colitis (UC) is becoming a global burden. Previous observational studies have unveiled associations between serum metabolites and UC, but their causal relationship remains unclear.</p></div><div><h3>Methods</h3><p>Serum samples from patients and mice with UC were utilized for untargeted metabolomics to identify UC-associated metabolites. Then, a two-sample mendelian randomization (MR) analysis was employed to estimate their causal relationship. Finally, mice with chronic colitis induced by dextran sodium sulfate (DSS) and macrophages were used to evaluate the protective role of creatine and underlying mechanism.</p></div><div><h3>Results</h3><p>16 serum metabolites showed associations with UC after adjusting for confounders and multiple testing. Among them, creatine exhibited a robust protective effect against UC (OR=0.39; 95 % CI=0.27–0.56). Significant reduction of creatine was also observed in mice with acute UC induced by DSS. The inverse variance weighted (IVW) MR analysis further confirmed a causal effect of creatine on UC risk (OR IVW=0.45; 95 % CI: 0.27–0.76). Furthermore, creatine supplementation could significantly suppress weight loss, disease activity index, mucosal damage and the infiltration of macrophages in mice with chronic colitis. Remarkably, creatine promoted the polarization of bone marrow-derived macrophage (BMDM) towards M2 phenotype and upregulated the expression of <em>il-10</em>, <em>il-12</em> and <em>arg-1</em>.</p></div><div><h3>Conclusions</h3><p>This study revealed a causal relationship between creatine and UC. Creatine supplementation ameliorated chronic colitis by inhibiting the colonic infiltration of macrophages and promoting its polarization towards M2 phenotype. These results offer new insight into the pathogenesis of UC, emphasizing a potential protective role of creatine for UC.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924015753","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Ulcerative colitis (UC) is becoming a global burden. Previous observational studies have unveiled associations between serum metabolites and UC, but their causal relationship remains unclear.
Methods
Serum samples from patients and mice with UC were utilized for untargeted metabolomics to identify UC-associated metabolites. Then, a two-sample mendelian randomization (MR) analysis was employed to estimate their causal relationship. Finally, mice with chronic colitis induced by dextran sodium sulfate (DSS) and macrophages were used to evaluate the protective role of creatine and underlying mechanism.
Results
16 serum metabolites showed associations with UC after adjusting for confounders and multiple testing. Among them, creatine exhibited a robust protective effect against UC (OR=0.39; 95 % CI=0.27–0.56). Significant reduction of creatine was also observed in mice with acute UC induced by DSS. The inverse variance weighted (IVW) MR analysis further confirmed a causal effect of creatine on UC risk (OR IVW=0.45; 95 % CI: 0.27–0.76). Furthermore, creatine supplementation could significantly suppress weight loss, disease activity index, mucosal damage and the infiltration of macrophages in mice with chronic colitis. Remarkably, creatine promoted the polarization of bone marrow-derived macrophage (BMDM) towards M2 phenotype and upregulated the expression of il-10, il-12 and arg-1.
Conclusions
This study revealed a causal relationship between creatine and UC. Creatine supplementation ameliorated chronic colitis by inhibiting the colonic infiltration of macrophages and promoting its polarization towards M2 phenotype. These results offer new insight into the pathogenesis of UC, emphasizing a potential protective role of creatine for UC.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.