{"title":"Therapeutic potential of palmitoleic acid in non-alcoholic fatty liver disease: Targeting ferroptosis and lipid metabolism disorders","authors":"","doi":"10.1016/j.intimp.2024.113025","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome associated with obesity and type 2 diabetes mellitus. Currently, there are no effective drugs to treat NAFLD. Palmitoleic acid (PA) has demonstrated therapeutic potential in managing various metabolic diseases and inflammation. Although ferroptosis is known to play a critical role in the NAFLD development, it remains unclear whether PA can alleviate NAFLD by inhibiting ferroptosis.</p></div><div><h3>Methods</h3><p>Thirty C57BL/6 mice were divided into three groups: standard diet, high-fat diet (HFD), and HFD with PA. The experiment lasted 16 weeks.</p></div><div><h3>Results</h3><p>PA alleviated liver injury, hepatitis, and dyslipidemia in HFD-induced NAFLD mice. It improved insulin resistance, downregulated genes and proteins related to fat synthesis, and upregulated genes and proteins linked to lipolysis and fat oxidation. Mechanistically, bioinformatics enrichment revealed the involvement of ferroptosis in NAFLD. PA mitigated oxidative stress and reduced liver iron content in NAFLD. It downregulated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression while upregulating glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression, thereby inhibiting ferroptosis.</p></div><div><h3>Conclusion</h3><p>PA exerts a protective effect against liver lipotoxicity by inhibiting lipid metabolism-mediated ferroptosis. These findings provide new insights into preventive and therapeutic strategies for the pathological processes of NAFLD.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924015467","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome associated with obesity and type 2 diabetes mellitus. Currently, there are no effective drugs to treat NAFLD. Palmitoleic acid (PA) has demonstrated therapeutic potential in managing various metabolic diseases and inflammation. Although ferroptosis is known to play a critical role in the NAFLD development, it remains unclear whether PA can alleviate NAFLD by inhibiting ferroptosis.
Methods
Thirty C57BL/6 mice were divided into three groups: standard diet, high-fat diet (HFD), and HFD with PA. The experiment lasted 16 weeks.
Results
PA alleviated liver injury, hepatitis, and dyslipidemia in HFD-induced NAFLD mice. It improved insulin resistance, downregulated genes and proteins related to fat synthesis, and upregulated genes and proteins linked to lipolysis and fat oxidation. Mechanistically, bioinformatics enrichment revealed the involvement of ferroptosis in NAFLD. PA mitigated oxidative stress and reduced liver iron content in NAFLD. It downregulated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression while upregulating glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression, thereby inhibiting ferroptosis.
Conclusion
PA exerts a protective effect against liver lipotoxicity by inhibiting lipid metabolism-mediated ferroptosis. These findings provide new insights into preventive and therapeutic strategies for the pathological processes of NAFLD.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.