{"title":"Modified radioimmunoassay versus ELISA to quantify anti-acetylcholine receptor antibodies in a mouse model of myasthenia gravis","authors":"","doi":"10.1016/j.jim.2024.113748","DOIUrl":null,"url":null,"abstract":"<div><p>In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)—which is more sensitive than ELISA—is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from <em>Tetronarce californica</em> (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.</p></div>","PeriodicalId":16000,"journal":{"name":"Journal of immunological methods","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022175924001339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In mouse models of myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies can be quantified to monitor disease progression and treatment response. In mice, enzyme-linked immunosorbent assay (ELISA) is the gold standard to quantify these antibodies. However, this method requires antigen purification, which is both time-consuming and expensive. In humans, radioimmunoassay (RIA)—which is more sensitive than ELISA—is commonly used to quantify AChR antibodies. At present, however, no commercial RIA kits are available to quantify these antibodies in mice. The aim of this study was to compare a modified commercial human RIA kit to two ELISA methods to detect AChR antibodies in an experimental autoimmune mouse model of MG (EAMG). C57BL/6 J mice were immunized with purified AChR from Tetronarce californica (T-AChR). Serum samples were analyzed by RIA and two ELISAs (T-AChR and purified mouse AChR peptide [m-AChR]). The modified RIA showed excellent sensitivity (84.1 %) and specificity (100 %) for the detection of AChR antibodies. RIA showed a good agreement with T-AChR ELISA (κ = 0.69) but only moderate agreement with m-AChR ELISA (κ = 0.49). These results demonstrate the feasibility of modifying a commercially-available RIA kit to quantify AChR antibodies in EAMG. The advantage of this technique is that it eliminates the need to develop the entire methodology in-house and reduces inter and intra-laboratory variability.
期刊介绍:
The Journal of Immunological Methods is devoted to covering techniques for: (1) Quantitating and detecting antibodies and/or antigens. (2) Purifying immunoglobulins, lymphokines and other molecules of the immune system. (3) Isolating antigens and other substances important in immunological processes. (4) Labelling antigens and antibodies. (5) Localizing antigens and/or antibodies in tissues and cells. (6) Detecting, and fractionating immunocompetent cells. (7) Assaying for cellular immunity. (8) Documenting cell-cell interactions. (9) Initiating immunity and unresponsiveness. (10) Transplanting tissues. (11) Studying items closely related to immunity such as complement, reticuloendothelial system and others. (12) Molecular techniques for studying immune cells and their receptors. (13) Imaging of the immune system. (14) Methods for production or their fragments in eukaryotic and prokaryotic cells.
In addition the journal will publish articles on novel methods for analysing the organization, structure and expression of genes for immunologically important molecules such as immunoglobulins, T cell receptors and accessory molecules involved in antigen recognition, processing and presentation. Submitted full length manuscripts should describe new methods of broad applicability to immunology and not simply the application of an established method to a particular substance - although papers describing such applications may be considered for publication as a short Technical Note. Review articles will also be published by the Journal of Immunological Methods. In general these manuscripts are by solicitation however anyone interested in submitting a review can contact the Reviews Editor and provide an outline of the proposed review.