High-quality identification of volatile organic compounds (VOCs) originating from breath.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Metabolomics Pub Date : 2024-09-06 DOI:10.1007/s11306-024-02163-6
Wisenave Arulvasan, Hsuan Chou, Julia Greenwood, Madeleine L Ball, Owen Birch, Simon Coplowe, Patrick Gordon, Andreea Ratiu, Elizabeth Lam, Ace Hatch, Monika Szkatulska, Steven Levett, Ella Mead, Chloe Charlton-Peel, Louise Nicholson-Scott, Shane Swann, Frederik-Jan van Schooten, Billy Boyle, Max Allsworth
{"title":"High-quality identification of volatile organic compounds (VOCs) originating from breath.","authors":"Wisenave Arulvasan, Hsuan Chou, Julia Greenwood, Madeleine L Ball, Owen Birch, Simon Coplowe, Patrick Gordon, Andreea Ratiu, Elizabeth Lam, Ace Hatch, Monika Szkatulska, Steven Levett, Ella Mead, Chloe Charlton-Peel, Louise Nicholson-Scott, Shane Swann, Frederik-Jan van Schooten, Billy Boyle, Max Allsworth","doi":"10.1007/s11306-024-02163-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers.</p><p><strong>Objectives: </strong>To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population.</p><p><strong>Methods: </strong>The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy<sup>®</sup> OMNI<sup>®</sup> platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be \"on-breath\" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching.</p><p><strong>Results: </strong>1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes.</p><p><strong>Conclusions: </strong>A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379754/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02163-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers.

Objectives: To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population.

Methods: The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be "on-breath" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching.

Results: 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes.

Conclusions: A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高质量鉴定源自呼吸的挥发性有机化合物 (VOC)。
导言:挥发性有机化合物(VOCs)可从潜在的新陈代谢中产生,并可从呼出的气体中检测到,因此为无创诊断提供了一条很有前景的途径。为了有把握地发现基于呼气的生物标记物,我们需要能够识别呼气中的挥发性有机化合物并与背景污染物区分开来的可靠、精确和可重复的呼气测量平台:目标:建立一种可靠的呼气收集和分析方法,该方法可生成一份全面的已知人类呼气中挥发性有机化合物清单:分析队列包括从异质人群中采集的 90 对呼气样本和背景样本。采用 Owlstone Medical 的 Breath Biopsy® OMNI® 平台,包括样本采集、TD-GC-MS 分析和特征提取。与配对的背景样本相比,如果挥发性有机化合物符合三个预定义指标中的至少一个指标,则被确定为 "呼气时 "挥发性有机化合物。利用保留索引和高分辨率精确质谱匹配,通过与纯化的化学标准进行比较,确定呼出气体中的挥发性有机化合物:结果:1471 种挥发性有机化合物出现在大于 80% 的样本(呼气和背景样本)中,其中 585 种挥发性有机化合物通过至少一种指标进行了呼气检测。其中 148 种已被确定,涵盖了广泛的化学类别:结论:我们开发出了一种可靠的呼气收集和相对定量分析方法,利用纯化的化学标准在不同人群中鉴定出了 148 种呼气挥发性有机化合物。提供经确认的真正经呼吸传播的挥发性有机化合物特征,将有助于未来生物标记物的发现和随后临床研究中生物标记物的验证。此外,这份挥发性有机化合物清单还可用于促进跨研究数据比较,以提高标准化程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
期刊最新文献
Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors. Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. Identification of novel hypertension biomarkers using explainable AI and metabolomics. Association of urinary volatile organic compounds and chronic kidney disease in patients with diabetes: real-world evidence from the NHANES. Investigation of the reproducibility of the treatment efficacy of a commercial bio stimulant using metabolic profiling on flax.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1